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Chapter 1

Introduction to models and
modelling

The word dynamic means “marked by usually continuous and productive activity or
change”1. In this course we think about systems that change in time: dynamical sys-
tems. One of our main goals is to see how mathematics plays a universal role in other
disciplines. Examples of dynamical systems include the motion of celestial bodies under
the influence of gravity, the changing population levels of plants and animals while ‘eating
or being eaten’, the variation of prices under economic influences, the changing concentra-
tions levels of chemical species during a reaction, and many, many more.

We encounter three classes of mathematical models for dynamical systems: iterated maps,
differential equations, and numerical methods. The classes are interrelated, as we will
see later. In this chapter we introduce each type of model in the context of population
growth.

1.1 An iterated map

Let us describe a simple model for the population of a single species in an environment with
limited resources, such as a limited amount of food. The population will be determined
at discrete times t0, t1, t2, etc. Let Pn ≥ 0 denote the population size at time tn. If there
were an unlimited food supply, we assume the population would grow by the uninhibited
growth factor β = Pn+1/Pn > 1. The quantity β is assumed constant, a parameter of
the model. Due to limitations, rather, the maximum population that can be sustained by
the environment (the so-called carrying capacity of the environment) is Pc > 0, a second
parameter. A model for the population growth that accounts for limited resources in the

1Merriam-Webster online dictionary.
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Figure 1.1: Iterates of the model (1.1) with P0/Pc = 0.1 and several values of β. The
iterates are connected by straight lines for visualization purposes. Independent of β, the
populations eventually tend to the carrying capacity Pc.

environment is

Pn+1 =
βPcPn

Pc + (β − 1)Pn
. (1.1)

Given the initial population P0 at t0, the equation (1.1) tells us how to compute the
population P1 at time t1, and from this we can iteratively compute P2, P3, etc. For
example, Equation (1.1) provides us a first example of a model in the form of an iterated
map or recursion. In Figure 1.1 some iterates of the model are shown for several values
of β. For large β the population grows faster initially, but all populations level off at the
carrying capacity.

1.2 A differential equation

The Verhulst model for population growth in an environment with limited resources is

dP

dt
= rP

(
1− P

Pc

)
, (1.2)

where P (t) is the population size, r > 0 is the uninhibited growth rate, and Pc > 0 is the
carrying capacity of the environment.
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Suppose the population at time t0 is P (t0) = P0, and we wish to find the population
P (t1) = P1 at some later time t1 > t0. Dividing both sides by P (1−P/Pc), and integrating
with respect to t from time t0 to t1 we find∫ t1

t0

1

P (1− P/Pc)
dP

dt
dt =

∫ t1

t0

r dt,∫ P (t1)

P (t0)

1

P (1− P/Pc)
dP = r(t1 − t0). (1.3)

Using a partial fraction decomposition, the integral on the left can be evaluated as fol-
lows ∫ P1

P0

(
1

P
+

1/Pc
1− P/Pc

)
dP = [lnP − ln(1− P/Pc)]P1

P0

= ln
P1

1− P1/Pc
− ln

P0

1− P0/Pc
.

Using this result and applying the exponential function to both sides of (1.3) gives(
P1

1− P1/Pc

)(
P0

1− P0/Pc

)−1

= er(t1−t0).

Solving for P1 yields

P1 =
er(t1−t0)PcP0

Pc + (er(t1−t0) − 1)P0

.

Note that, since t1 is arbitrary, the above relation provides us with a formula for finding
P (t) for all t > t0:

P (t) =
er(t−t0)PcP0

Pc + (er(t−t0) − 1)P0

. (1.4)

Solutions P (t) are shown in Figure 1.2, for the case r = 1/4 and different initial conditions
P0.

The Verhulst model (1.2) is our first example of a differential equation. Let us reflect for
a moment on what we have done here. In contrast to the iterated map (1.1), for which
the model itself provides a recipe for computing the solution, the model (1.2) does not
directly specify how the population P (t) varies as a function of time, but only specifies
the relation between P (t) and its derivative dP/dt. Consequently, we need to solve the
differential equation to determine P (t). Second, note that the solution (1.4) at time t is
expressed as a function of the solution at another time t0. If we do not know the solution
at some other time, the differential equation defines a class of solutions parameterized by
the unknown constant P0 (that is, each P0 defines a different solution).
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1.3 A numerical method

Suppose we did not know how not evaluate the integral in (1.3). We might try to learn
something about the solution using the following approach. Starting from the definition of
the derivative

dP (t)

dt
= lim

∆t→0

P (t+ ∆t)− P (t)

∆t
, (1.5)

we approximate this infinitessimal limit by a finite difference:

dP (t)

dt
≈ P (t+ ∆t)− P (t)

∆t
, (1.6)

for some fixed, positive value of ∆t. (That is, we refrain from taking the limit.) Substituting
this approximation into (1.2) yields

P (t+ ∆t)− P (t)

∆t
≈ rP (t)

(
1− P (t)

Pc

)
.

Denoting the approximation to P (tn) by Pn, where tn+1 = tn + ∆t, the above formula
defines, for each ∆t > 0, an iterated map or recursion

Pn+1 = Pn + ∆t r Pn

(
1− Pn

Pc

)
. (1.7)
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Figure 1.3: Iterates of the model (1.7) with P0/Pc = 0.1, r = 0.25, and different stepsizes
∆t. The iterates are connected by straight lines for visualization purposes. As ∆t is
decreased the iterates approach the exact solution shown in Figure 1.2.

This family of iterated maps, depending on the time step parameter ∆t, is our first example
of a numerical method or (more specifically) a numerical integrator. Whereas a differential
equation such as (1.2) may or may not be easily integrated analytically, the numerical
integrator is suitable for implementation on a computer.

See Figure 1.3 for numerical solutions computed with a range of stepsizes ∆t. We know that
as we make ∆t smaller, the finite difference (1.6) becomes a better and better approximation
of the derivative (1.5), and consequently we may expect that the approximation computed
via (1.7) better and better approximates the solution (1.4). This intuition is correct, as we
will see later, but it comes at a price: to compute the solution on the same interval with
smaller time steps, the number of computations increases. The computer must do more
work to improve the accuracy.

1.4 Relationships between the models

Note the similar form of the solution (1.4) of the differential equation model and the map
(1.1). Given r > 0 and a time step ∆t, if we define β̂ = exp(r∆t), then the solution of the
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differential equation at time P (∆t) is given from (1.4)

P (∆t) =
β̂PcP (0)

Pc + (β̂ − 1)P (0)
= F (P (0)).

The function F defines a map taking the initial condition to the solution at time ∆t. This
function is the same as the map of the iteration (1.1). To compute the solution P (2∆t),
we may either choose a new β̂ = exp(r2∆t), or simply apply F again to the new ‘initial
condition’ P (∆t), i.e.

P (2∆t) = F (P (∆t)).

In other words, the map (1.1) just happens to be2 the time ∆t-solution map of the differ-
ential equation (1.2). In fact, for any fixed ∆t, we can think of the solution of a differential
equation as defining a map that takes initial conditions to solutions at time ∆t. In this way,
associated with a differential equation is a whole class of maps, one for each ∆t > 0. The
converse is not true however. There exist maps that are not the solution of any differential
equation. This will become clear later in the course.

What about the numerical method (1.7)? Clearly, for each ∆t the numerical method is
just a map. We can say that a numerical method defines a one-parameter class of iterated
maps. There is something special about these maps, however. As we let the parameter ∆t
tend to zero, we will demand that the associated map converge to the solution map of the
differential equation.

In this course we study models in the form of iterated maps, differential equations, and nu-
merical integrators. All three define dynamical systems under appropriate conditions.

2Well, it didn’t “just happen”—it was constructed this way to illustrate a point.



Chapter 2

Definitions and elementary
concepts

2.1 Modelling time dependent processes

We assume that the state of our system at any time t can be fully described by a set of
d variables {y(1)(t), y(2)(t), . . . , y(d)(t)} that vary with time. Generally, the y(i)(t) will be
real numbers. When they denote populations or concentrations, they will be nonnegative.
The language of linear algebra is convenient. We denote

y(t) =

y
(1)(t)

...
y(d)(t)

 , y ∈ D ⊂ Rd, t ≥ 0, (2.1)

where D is sometimes referred to as the state space or phase space. In these notes we use
superscripted parentheses to denote the index of a vector element. For the most part we
try to avoid working with individual elements, however.

Example. The state of a chemical reaction may be specified by the concentrations of the reactants.
Let y(i)(t) be the concentration (say, in grams per centiliter) of reactant i at time t. Then the state
is give by (2.1), and D = Rd

+, where R+ is the set of nonnegative real numbers, since we do not
permit negative concentrations.

Example. The state of the solar system may be modelled by the positions and velocities of all plan-
ets relative to the sun. Later we will explain why both positions and velocities are needed. Let Xi(t) =
(x(i)(t), y(i)(t), z(i)(t))T be the position vector of the ith planet, and Vi(t) = (u(i)(t), v(i)(t), w(i)(t))T

12
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be its velocity vector. Then we may take

y(t) =


X1(t)
V1(t)

...
Xm(t)
Vm(t)

 ,

where m = 8 or m = 9 depending on whether one considers Pluto a planet1. Here, D = R3m.

For discrete time models, the state is only defined at distinct times t0, t1, t2, . . . , assumed
uniformly spaced with step size ∆t, i.e. tn+1 = tn + ∆t. In this case, we use superscript
notation yn = y(tn) to indicate time. Obviously, the effectiveness of such models depends
on the existence of an appropriate ∆t, which typically needs to be ‘small enough’ but not
‘too small’.

The second ingredient to a dynamical system is a rule describing how the system state
changes in time. In the next three sections we expound on the three ‘rules’ illustrated in
the previous chapter: iterated maps, differential equations, and numerical integrators.

2.2 Iterated maps

The rule describing the change of the system state in discrete time may be given as a set
of d algebraic functions of d variables:

x
(1)
n+1 = F (1)

(
x(1)
n , x(2)

n , . . . , x(d)
n

)
, (2.2)

x
(2)
n+1 = F (2)

(
x(1)
n , x(2)

n , . . . , x(d)
n

)
, (2.3)

... (2.4)

x
(d)
n+1 = F (d)

(
x(1)
n , x(2)

n , . . . , x(d)
n

)
. (2.5)

Here, each of the functions F (i) is a scalar valued function of d variables: F (i) : Rd → R.
Analogous to (2.1) we define the discrete state vector xn = (x

(1)
n , x

(2)
n , . . . , x

(d)
n )T . Similarly

we can define a vector function

F (xn) =

F
(1)(xn)

...
F (d)(xn)

 , F : Rd → Rd,

and write (2.2)–(2.5) in the compact (vector) notation

xn+1 = F (xn), n = 0, 1, 2, . . .

1Pluto was discovered in 1930 and named the ninth planet. In 2005 the International Astronomical
Union officially defined a ’planet’. Pluto fell short of the critera and, sadly, was demoted.
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Given a mapping F (x) : Rd → Rd, a subset D ⊂ Rd is said to be invariant under the
mapping F if F (x) ∈ D whenever x ∈ D. We denote this by F : D → D. In this situation,
we define an iteration on D by

xn+1 = F (xn), n = 0, 1, 2, . . . , x0 ∈ D. (2.6)

A sequence of vectors satisfying (2.6) is referred to as an orbit :

{x0, x1, x2, . . . |xn+1 = F (xn)}.

An iterated map is also referred to as a discrete map, recursion, recurrence relation, iterated
function, etc.

A recursion may also depend on more than one previous time level. For instance a two-term
recurrence is defined via a rule such as

xn+1 = G(xn, xn−1), G : Rd ×Rd → Rd.

Example. One famous recursion model is the Fibonacci recursion

xn+1 = xn + xn−1. (2.7)

Fibonacci used the model to describe the population dynamics of rabbits. The number xn represents
the number of rabbit pairs in month n. The model accounts for maturity of the rabbits, by assuming
that newborn pairs must first mature by one month before they can produce offspring. Subsequently,
all mature pairs produce precisely one pair of offspring. The model also assumes that all rabbit pairs
remain alive. The number of rabbits in month n + 1 is therefore equal to the number of rabbits
in month n, plus the number of new offspring, which is equal to the number of rabbits in month
n− 1.

A general (k + 1)-term recurrence assumes the form

xn+1 = G(xn, xn−1, . . . , xn−k). (2.8)

A k-term recurrence can always be written as a one-step iteration by introducing extra
variables. To do so, define the vector

yn =


xn
xn−1

...
xn−k


and the extended map

F (yn) =


G(xn, xn−1, . . . , xn−k)

xn
...

xn−k+1

 .
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Then the companion form
yn+1 = F (yn)

is equivalent to (2.8) plus a number of trivial identities.

Example. We can rewrite the Fibonacci sequence (2.7) as a one-step model by introducing a
second variable zn = xn−1. Then the sequence can be written

xn+1 = xn + zn, zn+1 = xn.

In matrix-vector form, this becomes (
xn+1

zn+1

)
=

[
1 1
1 0

](
xn
zn

)
.

The matrix above is the simplest example of a Leslie matrix, to be discussed in Chapter 4.

When d = 1 we speak of a scalar iteration. We will treat recursions on the real line in
Chapter 3, and discuss the generalization to higher dimensions in Chapter 4.

2.3 Differential equations

In this section we will learn about models described by differential equations. The motion
or evolution of the model in time is given by a function y(t). Here, t varies over an interval
t ∈ [0, T ], and y(t) defines the state of the model at time t. For the Verhulst model (1.2),
the state is specified by the population size P (t).

Remark. Of note, y(t) is a continuous (in fact, differentiable) function of t, which may
not reflect the often discrete nature of the phenomenon being modeled. The number of
individuals in a population is always a whole number, and cannot change continuously.
The continuum approximation is most appropriate for a large population, or when the
quantities involved reflect probabilities or averages.

Unlike models based on recursions, differential equation models do not directly define the
motion y(t), nor even provide a recipe for constructing it. Instead, the motion is implicitly
defined by specifying the relationship between y(t) and one or more of its derivatives. The
general form of a differential equation is

dy

dt
= f(t, y(t)).

The differential equation is seen as a problem whose solution yields the motion y(t), where
we mean by a solution a function y(t) that identically satisfies the differential equation and
any additional constraints, such as the initial condition.

Example. The model for exponential growth or decay, familiar from radioactive materials, interest
on loans, and so forth, is

dy

dt
= ay(t), (2.9)
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where a is a given constant. We can immediately verify by direct substitution that a solution to this
differential equation is provided by the function

y(t) = C exp(at) (2.10)

with arbitrary constant C. Hence the differential equation is an implicit definition of a class of
functions. By specifying the solution at some time, say y(0) = y0, the constant C becomes fixed,
since

y0 = y(0) = Cea·0 = C,

and therefore the solution through this point is y(t) = y0 exp(at). The initial value problem is to find
the solution y(t), t ∈ [0, T ], of a differential equation given y(0) at time t = 0.

Remark. We will often use shorthand notation ẏ or y′ to represent dy
dt

.

In the above example, the function f(t, y) = ay has no explicit dependence on t. In such
a case, the differential equation is called autonomous and otherwise non-autonomous. An
example of a non-autonomous differential equation is ẏ = sin(t)y.

Most models require more than one piece of information to define the model state, and
consequently y(t) will be a vector in a d-dimensional subset:

y(t) = (y(1)(t), y(2)(t), . . . , y(d)(t))T , y(t) : [0, T ]→ D ⊂ Rd.

For example, if the model describes the populations of aphids A(t) and ladybugs B(t) in
a rose garden, then y(t) = (A(t), B(t))T is a vector with two components, the number of
each species at time t.

Each of these variables y(1)(t), . . . , y(d)(t) satisfies a differential equation that will typically
depend on the other variables. The general form of this system of differential equations
is

dy(1)

dt
= f (1)

(
t, y(1)(t), y(2)(t), . . . , y(d)(t)

)
,

dy(2)

dt
= f (2)

(
t, y(1)(t), y(2)(t), . . . , y(d)(t)

)
,

...

dy(d)

dt
= f (d)

(
t, y(1)(t), y(2)(t), . . . , y(d)(t)

)
.

Define the vector of time derivatives

dy

dt
=

(
dy(1)

dt
,
dy(2)

dt
, . . . ,

dy(d)

dt

)T
and the vector field

f(t, y) = (f (1)(t, y), f (2)(t, y), . . . , f (d)(t, y))T .
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Specifying an initial condition y0 = (y(1)(0), y(2)(0), . . . , y(d)(0))T , we pose the general form
of the initial value problem on D ⊂ Rd:

dy

dt
= f(t, y), y(0) = y0, t ∈ [0, T ], y ∈ D, f : [0, T ]×D → Rd. (2.11)

The special case d = 1 is referred to as a scalar differential equation.

The order of a differential equation is the magnitude of the largest derivative of y present.
For instance, the differential equation

d2y

dt2
+ a

dy

dt
+ by = 0 (2.12)

is a second order differential equation since the largest derivative of y is two. We can
always rewrite a higher order differential equation as a first order system by introducing
additional variables. In the above example, for instance, we define v ≡ dy/dt and derive
the system

dy

dt
= v,

dv

dt
= −av − by.

Evidently, defining initial conditions for the first order form corresponds to specifying
initial conditions on y and some of its derivatives in the higher order formulation. In this
example, we would define y(0) = y0 and v(0) = ẏ(0) = v0.

2.3.1 Solution by separation of variables

There are a number of general strategies for solving scalar differential equations. For our
purpose the most important strategy is the method of separation of variables, which has
already been used to construct the solution of the Verhulst equation (1.4).

Suppose that the function f can be written as a quotient f(t, y) = g(t)/h(y), where g(t)
and h(y) have known anti-derivatives G(t) and H(y). Then we may separate the variables
and integrate

dy

dt
=
g(t)

h(y)∫
h(y)

dy

dt
dt =

∫
g(t) dt∫

h(y) dy =

∫
g(t) dt

H(y) = G(t) + C,
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where C combines the integration constants and is to be determined from the initial con-
dition. To express the solution y(t) explicitly we also require H(y) to be invertible.

Example. We solve the initial value problem

y′ = y2, y(0) = y0 (2.13)

In this case g(t) = 1, h(y) = y−2, G(t) = t and H(y) = −y−1, yielding

−1

y
= t+ C, or y(t) =

1

−C − t
.

Using the initial condition y(0) = y0, we determine that C = −y−1
0 , and the general solution is

y(t) =
1

y−1
0 − t

. (2.14)

Remark. Every autonomous scalar differential equation y′ = f(y) is separable with
g(t) = 1 and h(y) = 1/f(y). Explicit solution of the differential equation is then possible if
an invertible antiderivative H(y) exists. The solutions of many scalar differential equations
have been studied and their solutions categorized and approximated in the theory of special
functions.

2.3.2 Existence and uniqueness of solutions

Whether or not a solution can be explicitly constructed, it is often necessary to at least
show that a solution exists and that it is unique. For differential equations, it is well
understood that for a large class of initial value problems unique solutions exist. The
following definition and theorem hold for scalar as well as multidimensional systems of
differential equations:

Definition 1 A vector field f(y) : D → Rd is said to be Lipschitz continuous on D if there
exists a constant L > 0 such that

‖f(x)− f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ D. (2.15)

Theorem 2.3.1 Let D ⊂ Rd be an open set and D̄ its closure. If f(y) is Lipschitz
continuous on D̄ and y0 ∈ D, then the initial value problem (2.11) has a unique solution
y(t) satisfying y(0) = y0. The solution exists on an interval in t containing the origin, and
extending until such time as y(t) reaches the boundary of D.

Remark. If f is continuously differentiable on a closed, bounded set D̄ then it is Lipschitz
continuous on D. If f is Lipschitz continuous, then it is continuous. In the scalar case,
we can choose L = maxD̄ |f ′(y)|. (And for d > 1, we can choose L to be the maximum
normalized directional derivative of f on D).
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Example. For y0 < 0, the differential equation (2.13) has Lipschitz constant L = 2ȳ on any
interval D = (−ȳ, ȳ). There is a unique solution through any point in such an interval. If y0 < 0
the solution exists for all t > 0. For y0 > 0, the solution exists on t ∈ (0, y−1

0 ), since y(t) grows
unbounded at t→ y−1

0 .

For the initial value problem

y′ = 2
√
y, y(0) = 0,

Lipschitz continuity fails on any D containing the origin (since f ′(y) is unbounded there), and no
unique solution exists. It can be directly verified that two distinct solutions to this initial value
problem are y(t) ≡ 0 and y(t) = t2.

2.4 Numerical methods

Very few of the differential equations encountered in practice can be solved explicitly. Exact
solutions are known for nonlinear differential equations in few dimensions, or when there is
some mathematical structure that constrains the trajectories to lie at the intersections of
certain surfaces. However, even for differential equations in R3, the trajectories can become
so complex and chaotic, that no explicit solution is imaginable. The complexity increases
with the dimension d. In this case, we may either try to prove qualitative statements
about the solution, e.g. to determine the ultimate fate of all solution trajectories with
initial condition in some open set; or we may employ numerical methods to approximately
solve the differential equation using a computer for some specific initial condition. In this
section we introduce numerical methods for differential equations.

The most fundamental property of the numerical approximation is that it must be com-
putable in a finite number of operations (unless one is willing to wait an eternity for
the solution). The process of replacing the continuous solution by a finite one is called
discretization.

To discretize, we replace the interval D = [t0, t0 +T ] by a finite number N of discrete times
tn = t0 + n∆t, n = 0, 1, . . . , N , where ∆t = T/N is the step size. Similarly, we replace
the continuous solution y(t) on D with the numerical solution yn ≈ y(tn), n = 0, 1, . . . , N .
The yn can be thought of as snapshots of the system state at the discrete times, and the
sequence {y0, y1, . . . , yN} as a movie. Finally, we need a procedure to generate the yn
for n > 0 (y0 is the given initial condition). In this section, we will consider methods
that approximate yn+1 as a recursion given yn, ∆t, and the explicit form of f(t, y). A
time-stepping procedure is referred to as a numerical integrator or scheme.

There are several approaches to the construction of integrators. The oldest and simplest
method is Euler’s method, which we encoutered in (1.7). It is based on the rectangle rule
for approximation of an integral. First consider the special case of (2.11) with f(t, y) = f(t)
(f is independent of y). The rectangle rule is just yn+1 = yn + ∆tf(tn). Generalizing this
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to y-dependent problems is straightforward, and results in Euler’s method

yn+1 = yn + ∆tf(tn, yn). (2.16)

Euler’s method can be interpreted in several other ways: (1) as the direct extrapolation
of the local slope of y(t) through (tn, yn), (2) as the single term truncation of a Taylor
expansion, or (3) as a finite difference, as we explained in Chapter 1. These different
interpretations can be used to generalize this method and construct others.

To program Euler’s method, we write a loop and compute the successive iterates as fol-
lows:

Algorithm 2.4.1 (Euler’s Method) Given: initial time t0, initial value y0, stepsize
∆t, a vector field f(t, y), and a number of time steps N ,

Output: y1, y2, . . . , yN approximating the solution of dy
dt

= f(y, t) at equally spaced points
t1 := t0 + ∆t, t2 = t0 + 2∆t, . . ..

for n = 0, 1, . . . , N − 1

tn+1 := t0 + n∆t;

yn+1 := yn + ∆tf(tn, yn);

end �

Figure 1.3 illustrates the numerical solutions for a range of step sizes ∆t. We can make a
couple of observations. First, we are happy to see that all of the solutions tend to the stable
equilibrium at P = Pc = 1. We will come back to this later. However, we may also notice
that there is a quite a difference between the solutions leading up to the stable equilibrium,
despite the fact that all of the numerical trajectories start from the same initial condition.
We discuss this next.

2.4.1 Convergence

A numerical method is an approximation of the exact time-∆t solution map (cf. Section 1.4)
of a differential equation. As such, there is always an element of error in the numerically
generated solution. If the method is to be useful, we must be able to control this error, at
least on short enough time intervals.

A tool of singular importance in numerical analysis is Taylor series, for which the relevant
form here is

y(t+ ∆t) = y(t) + ∆t y′(t) +
∆t2

2!
y′′(t) +

∆t3

3!
y′′′(t) + · · · (2.17)
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for a perturbation ∆t > 0 around t. For a scalar function (d = 1), assuming y(t) is p-times
continuously differentiable, Taylor’s theorem says there is a point t∗ ∈ [t, t + ∆t] such
that

y(t+ ∆t) =

p−1∑
i=0

∆ti

i!

diy

dti
(t) +

∆tp

p!

dpy

dtp
(t∗).

For a vector function (d > 1), such a statement holds for each component, but in general
the mean value will be attained at a different t∗ for each component. Nonetheless the norm
of the last (remainder) term is bounded on [t, t+ ∆t], and we have

‖∆tp

p!

dpy

dtp
(t)‖ ≤ C∆tp,

for a positive constant C, and we write

y(t+ ∆t) =

p−1∑
i=0

∆ti

i!

diy

dti
(t) +O(∆tp), (2.18)

where the notation O(∆tp) means the final terms converge to zero no slower than ∆tp,
i.e.

lim
∆t→0

(
1

∆tp

∞∑
i=p

∆ti

i!

diy

dti
(t)

)
≤ κ,

for some contant κ > 0 independent of ∆t.

We define the global error after n time steps to be the difference between the discrete
approximation and the exact solution

en := yn − y(tn). (2.19)

For an approximation we want the error to be small in norm at each step of simulation,
that is, we would like to satisfy

max
n=0,1,...N

‖en‖ ≤ δ,

for some choosable tolerance δ. For a given vector field f , initial value y0, and time interval
T , we have only one free parameter, the timestep ∆t = T/N , which we can vary to make
sure the norm of the error meets our tolerance. If the method is going to be useful, we
must be able to vary ∆t to meet any tolerance we choose.

Given a Lipschitz vector field f , a method is said to be convergent if, for every T ,

lim
∆t→0,

∆t=T/N

max
n=0,1,...,N

‖en‖ = 0.

(Note that this definition considers only discrete values of ∆t which are integral fractions of
the time interval. Equivalently we could take the limit as N →∞ with ∆t = T/N .)
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We demonstrate convergence for Euler’s method. Consider the initial value problem for
an autonomous differential equation

dy

dt
= f(y), y(t) ∈ D, f : D → Rd,

and assume that f is Lipschitz with constant L, and all solutions y(t) have bounded second

derivatives on D, i.e. ‖d2y
dt2
‖ ≤ C.

For an initial value problem y(0) = y0 and t ∈ [0, T ], we evaluate the global error (2.19)
after n + 1 steps of Euler’s method, and expanding the exact solution y(t) using Taylor’s
theorem:

en+1 = yn+1 − y(tn+1)

= yn + ∆tf(yn)−
[
y(tn) + ∆t

dy

dt
(tn) +

∆t2

2

d2y

dt2
(t∗)

]
= yn + ∆tf(yn)−

[
y(tn) + ∆tf(y(tn)) +

∆t2

2

d2y

dt2
(t∗)

]
,

for some t∗ ∈ [tn, tn+1]. Applying the triangle inequality and the Lipschitz condition,

‖en+1‖ ≤ ‖yn − y(tn)‖+ ∆t‖f(yn)− f(y(tn))‖+
∆t2

2
C = (1 + ∆tL)‖en‖+

∆t2

2
C. (2.20)

To proceed we need the following lemma:

Lemma 2.4.1 Let the sequence of nonnegative numbers xn satisfy inequality recursion

xn+1 ≤ axn + b, x0 ≥ 0,

where a ≥ 0 and b ≥ 0. Then

xn ≤ anx0 +
an − 1

a− 1
b.

The proof, by induction, is straightforward.

For the global error (2.20) the appropriate constants are a = 1 + ∆tL ≤ exp(∆tL) and
b = C∆t2/2. Assuming the initial condition is exact, e0 = 0 and we find

‖en‖ ≤
(
en∆tL − 1

∆tL

)
∆t2

2
C,

and in particular we find

max
n
‖en‖ ≤ ∆t

C

2L
(eTL − 1).

The global error decreases at a rate proportional to ∆t as ∆t→ 0. Consequently, Euler’s
method converges as ∆t→ 0.
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2.4.2 Trapezoidal rule and other methods

Before concluding this section, we introduce a some additional numerical methods. From
elementary calculus, you may remember that a better approximation than the rectangle
rule is the trapezoidal rule. Again consider the equation dy

dt
= f(t). The trapezoidal rule

approximation is yn+1 = yn + ∆t
2

(f(tn+1) + f(tn)). Generalizing to the ODE (2.11), the
trapezoidal rule is

yn+1 = yn +
∆t

2
(f(tn, yn) + f(tn+1, yn+1)) . (2.21)

Notice that this method is of a character very different from Euler’s method. It is not
possible to evaluate the last term in the equation without knowing yn+1, and it is not
possible to compute yn+1 without evaluating this term. The trapezoidal rule defines yn+1

implicitly as function of yn. In other words, we must solve the typically nonlinear system
of algebraic equations

0 = r(y) := y − yn +
∆t

2
(f(tn, yn) + f(tn+1, y)) (2.22)

for y to determine yn+1. Such methods are termed implicit methods, and generally demand
much more work from the computer per time step than an explicit method such as Euler’s
method. Methods for solving systems of algebraic equations are, for example Newton’s
method (which we will encounter in Chapter 4), or Picard iteration. Obviously an implicit
method must be significantly advantageous in some other sense to justify its increased
computational cost. We will say more about this later. Also, it is uncertain if (2.22)
will possess any real solutions, and if so, how many. For instance, applying (2.21) to the
differential equation (2.13) yields

yn+1 = yn +
∆t

2
(y2
n + y2

n+1) ⇐⇒ yn+1 −
∆t

2
y2
n+1 = yn +

∆t

2
y2
n.

This is a quadratic equation in the unknown yn+1 and has two solution branches in general.
Which one should we choose? For ∆t = 0, there is the unique solution yn+1 = yn. One of
the two solution branches converges to this solution in the limit ∆t→ 0, whereas the other
branch diverges. We should choose the branch that remains bounded in the limit.

Two additional numerical methods that we will study are the implicit Euler method

yn+1 = yn + ∆t f(tn+1, yn+1), (2.23)

which is similar to Euler’s method, but implicit like Trapezoidal Rule; and the “extrapo-
lated midpoint rule”:

yn+1 = yn + ∆t f

(
tn+1/2, yn +

∆t

2
f(tn, yn)

)
, (2.24)

where tn+1/2 = tn+∆t/2. Note that this method is explicit, as is Euler’s method. However
the extrapolated midpoint rule converges more rapidly.



Chapter 3

Models on the real line

3.1 Scalar iterations

In this chapter we focus on scalar models. We introduce the concepts of equilibrium and
stability in this context. To motivate our discussion we first introduce a technique for
visualizing scalar iterations.

3.1.1 Graphical analysis of iterated maps

One means of developing intuition about scalar maps is to construct the associated “cobweb
diagram”. This is illustrated in Figure 3.1. On the horizontal axis, we plot xn and on the
vertical axis xn+1. The function F (x) is shown in blue. Suppose x0 = 0.1. We follow the
dotted line upwards to the graph of F (x0), then to the left along the dotted line to the
vertical axis to find x1. To compute the following iterate, we first need to find the image
of x1 on the xn axis. To facilitate this, the identity map I(x) = x is also shown in the
figure: the red line. Now we follow the dashed line from x1 horizontally to the identity
map, then down along the dotted line to find x1 on the horizontal axis. From here we can
repeat the whole process again to find x2, etc. However, we can also take a short cut. From
the figure it is clear that it is unnecessary to follow the dashed lines to the corresponding
axes. Instead, we can iterate by alternately stepping vertically to the graph of F , and
subsequently horizontally to the identity map. This cobweb diagram is illustrated with the
yellow line.

Example. The logistic map is a scalar iteration related to the Verhulst model (1.2)

xn+1 = rxn(1− xn), ⇐⇒ F (x) = rx(1− x). (3.1)

We choose D = [0, 1]. The mapping F (x) is a parabola, centered at x = 1/2 and concave downward.
With r > 0, F (x) is nonegative for all x ∈ D, and attains its maximum at x = 1/2 with F (1/2) = r/4.
Consequently, D is invariant under F for r ∈ [0, 4].

24
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Figure 3.1: Graphical analysis method illustrated for r = 1.8.

Figure 3.2 illustrates cobweb diagrams for the logistic map for different values of the growth
rate parameter r. The corresponding orbits are shown as a sequence {x0, x1, . . . } as func-
tion of iteration number n on the right. In all three cases, the orbits appear to converge
upon a fixed value. In the following sections we provide an explanation for this observed
behavior.

3.1.2 Fixed points and stability

The points in a cobweb diagram at the intersection of the graphs of F (x) and I(x) (the
blue and red lines, respectively) are special. These correspond to iterates xn+1 = F (xn) =
I(xn) = xn. The iterates are identical, and the orbit satisfies

xn = xn−1 = · · · = x1 = x0 = α, ⇐⇒ α = F (α)

Such a point α is termed an equilibrium or fixed point of the recursion (2.6).

What are the fixed points of the logistic map (3.1)? These are the solutions of

x = F (x) = rx(1− x) ⇐⇒ x [r(1− x)− 1] = 0.

That is,
α ∈ {0, 1− r−1}.

Why are equilibria important? Looking at the cobweb diagrams in Figure 3.2, we notice
that in all cases the orbits seem to eventually approach one of the two equilibria. For the
case r = 1, the orbit approaches equilibrium α1 = 0, while for the cases r = 1.8 and r = 2.8
the orbit approaches α2 = 1 − r−1. For r = 1.8 the iterates xn tend to α2 monotonically,
whereas for r = 2.8 they oscillate about α2 with decreasing amplitude.
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Figure 3.2: Cobweb diagrams (left) and orbits (right) for the logistic map (3.1) for r = 1
(top), r = 1.8 (middle) and r = 2.8 (bottom).

An equilibrium with the property that nearby iterates remain nearby is called a stable
equilibrium. To be precise,

Definition 2 An equilibrium α = F (α) of the recursion (2.6) is Lyapunov stable if, for
every ε > 0 there exists δ > 0 such that ‖xn − α‖ ≤ ε for all n = 1, 2, . . . , whenever
‖x0 − α‖ ≤ δ. An equilibrium that is not stable is unstable.

Can we use the definition to prove that the equilibrium α1 = 0 is stable for the logistic map
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(3.1) with r = 1? We have already seen that the interval D = [0, 1] is invariant under the
logistic map for all r ∈ [0, 4]. This implies that if x0 ∈ D, then xn ≥ 0, for all n. For r = 1,
the map (3.1) becomes xn+1 = xn(1 − xn) = xn − x2

n, and since x2
n ≥ 0, it follows that

xn+1 ≤ xn, with strict inequality holding if xn 6∈ {0, 1}. Hence {xn} is a monotonically
decreasing sequence in D if 0 < x0 < 1. Consequently, for every ε > 0, we can choose
δ = min{ε, 1}, and α1 is stable.

Next, consider the trivial recursion xn+1 = xn. For this iteration, every point is an equilib-
rium. Furthermore, every point is stable with δ = ε. Yet the iterates do not ‘tend to’ some
other value in the limit of large n, as we observed for the logistic map. We distinguish
between stable equilibria and asymptotically stable equilibria.

Definition 3 An equilibrium α = F (α) of the recursion (2.6) is asymptotically stable if
it is Lyapunov stable and, in addition, limn→∞ xn = α.

In Figure 3.3 we provide two examples to illustrate some aspects of the stability definitions.
The first recursion (upper plots of Fig. 3.3) is:

F (x) =

{
1.2x, 0 ≤ x ≤ 1

2
,

0, x > 1
2
.

In this case, for any small positive x0, the iterates increase monotonically until xn > 1/2, at
which point xn+1 = xn+2 = · · · = 0. That means that limn→∞ xn = 0, for all x0. However,
it is not possible to find a δ > 0 for, say, ε = 1/4 such that the iterates remain within a
distance ε of 0 for all n. The equilibrium is unstable.

The second recursion (lower plots of Fig. 3.3) is

F (x) =

{
−1

6
x, x ≤ 0,

−5x, x > 0.

In this case the equilibrium is asymptotically stable, but the iterates make large excursions
away from the equilibrium whenever x0 > 0. Therefore, δ must be chosen much smaller
than ε to meet the definition of stability.

The following theorem provides a useful criterion for identifying stable equilibria.

Theorem 3.1.1 Let D = [a, b] ⊂ R and F : D → D be continuously differentiable. A
fixed point α = F (α) is asymptotically stable if |F ′(α)| < 1 and unstable if |F ′(α)| > 1.

Proof Let xn be represented locally in a neighborhood of α as xn = α+ ηn. Inserting this
into the recursion (2.6) and applying Taylor’s theorem yields

α + ηn+1 = F (α + ηn) = F (α) + F ′(ξ)ηn,

for some ξ between α and α + ηn. Since α = F (α) this reduces to

ηn+1 = F ′(ξ)ηn.
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Figure 3.3:

Choose ρ such that |F ′(α)| < ρ < 1. Then there exist δ+ > 0 and δ− > 0 with δ =
min{δ+, δ−} such that |F ′(ξ)| ≤ ρ for all |ξ−α| < δ (see Figure 3.4). If |xn−α| < δ, then

|xn+1 − α| = |ηn+1| = |F ′(ξ)||ηn| < ρ|ηn| = ρ|xn − α| < |xn − α|.

Iterating this argument shows that |xn − α| < ρn|x0 − α| if |x0 − α| < δ.

The same reasoning with < replaced by > proves the converse. �

The proof of the theorem shows why strict inequality is necessary. The case |F ′(α)| = 1
must be analyzed individually.

Let us apply Theorem 3.1.1 to the logistic map (3.1). The derivative is

F ′(x) = r(1− 2x)

For the equilbrium α1 = 0, we find F ′(0) = r, so the origin is stable if r < 1. At the
equilibrium α2 = 1− r−1 we find F ′(1− r−1) = 2− r. This equilibrium is stable if

|2− r| < 1 ⇐⇒ 1 < r < 3

Hence, we see that indeed α2 is stable in the cases r = 1.8 and r = 2.8 as shown in
Figure 3.2. Note also that for 1 < r < 2, the slope F ′(α2) is positive and the convergence
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Figure 3.4: Illustration of the proof of Theorem 3.1.1.

monotone, whereas for 2 < r < 3, the slope F ′(α2) is negative and the convergence
oscillatory.

What about the cases r = 1 and r = 3? For these values |F ′(α2)| = 1 and Theorem 3.1.1
does not apply. We have already seen that the origin is stable for r = 1. The case r = 3
is left to the reader to prove.

3.1.3 Periodic solutions and bifurcations

What is the desitny of the orbits of the logistic map (3.1) in case r > 3? We have seen
that for all 0 ≤ r ≤ 4, the function F maps D into itself, so the orbit {xn} remains in the
set D for all n. Yet F possesses no stable equilibrium. Figure 3.5 illustrates the orbit for
r = 3.2. After a short transient period, the orbit appears to alternate between two values.
Such an orbit is called a period-2 orbit.

A period-2 orbit consists of a pair of points β1 ∈ D and β2 ∈ D satisfying

F (β1) = β2, F (β2) = β1, β1 6= β2.

Note that in this case, β1 and β2 are both fixed points of the composite map F ◦ F (x) =
F (F (x)), but not of F (x) itself.

For the logistic map (3.1), the composite map is

F ◦ F (x) = rF (x)(1− F (x)) = r2x(1− x)(1− rx(1− x)).

This function is shown in the leftmost plot Figure 3.6. We see that F ◦F has four equilibria.
The origin and the equilibrium near x = 0.7 are unstable, since the slope of F ◦F is clearly
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Figure 3.5:

greater than that of I(x) there. The remaining two are stable and correspond to the
observed 2-periodic orbit. In the middle plot of Figure 3.6 we see the logistic map F (x)
superimposed over the plot of F ◦F . The unstable equilibrium of F ◦F is the equilibrium
α2 = 1 − r−1 of F (x) which became unstable when we increased r above r > 3. In the
rightmost plot of Figure 3.6 we show the superimposed functions F and F ◦F for r = 2.8.
The 2-periodic orbit arises when the slope of F increases above unity.
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As r is increased further to r = 3.5, the slope of F ◦ F at β1 and β2 again exceeds unity
and the 2-periodic orbit becomes unstable. At this point a 4-periodic orbit appears, as
shown in Figure 3.7.

The function F 4(x) = F ◦F ◦F ◦F (x) possesses 8 equilibria: the unstable fixed points α1

and α2 of F , the unstable 2-periodic orbit β1 and β2, and the new 4-periodic orbit:

F (γ1) = γ2, F (γ2) = γ3, F (γ3) = γ4, F (γ4) = γ1.

All eight equilibria of F 4 can be seen in the left plot of Figure 3.8. In the right plot, the
functions F and F ◦ F are superimposed, illustrating the shared equilibria.
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Continuing to increase r in this way we find the 4-periodic orbit giving rise to an 8-periodic
orbit, etc. An important theorem is that of Sharkovskii. Consider an ordering of the natural
numbers as follows

3, 5, 7, 9, · · ·
2 · 3, 2 · 5, 2 · 7, 2 · 9, · · ·

22 · 3, 22 · 5, 22 · 7, 22 · 9, · · ·
...

...
...

... · · ·
· · · 23, 22, 21, 1,

where the first row is the odd numbers, the second row is two times the odd numbers,
the third row is 22 times the odd numbers, etc., and the last row is all powers of 2 in
decreasing magnitude. Then Sharkovskii’s theorem states that any recursion that has a p-
periodic orbit, also has a q-periodic orbit for every q that appears later in this ordering than
p. In particular, a recursion that possesses a 3-periodic orbit, possesses a q-periodic orbit
for every natural number q. Our examples above illustrate the last row of the ordering,
i.e. the powers of 2. In the case r = 3.5 we saw that accompanying the 4-periodic orbit
were unstable 2-periodic and 1-periodic orbits.
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Figure 3.9: Bifurcation diagram for the Logistic map (3.1). Left: the entire parameter
range r ∈ [0, 4]. Right: enlargement of the range r ∈ [3.5, 4].

3.1.4 Chaotic maps

A map F : D → D is said to be chaotic or exhibit chaos if

1. For every x0 there exist small perturbations that lead to large deviations of the orbits.

2. Every neighborhood of every x ∈ D there exists an x0 such that the orbit {xn} is
periodic.

3. There exists an orbit {xn} whose iterates come arbitrarily close to every x ∈ D.

To demonstrate this definition, let us examine the map

xn+1 = 10xn mod 1.

Given the decimal representation of a real number on D = [0, 1], the map just shifts the
decimal one place to the right and removes the whole number part. For instance, given a
decimal representation

x0 = 0.27578397684409087

x1 = 0.75783976844090873

x2 = 0.57839768440908731

x3 = 0.78397684409087314

We check that this map satisfies all of the above criteria and is therefore a chaotic map.



3.2. EQUILIBRIA AND STABILITY FOR DIFFERENTIAL EQUATIONS 33

First consider the sequence that arises by perturbing x0 in the 13th digit:

x0 = 0.27578397684409087

x̃0 = 0.27578397684423296

x1 = 0.75783976844090873

x̃1 = 0.75783976844232963

x2 = 0.57839768440908731

x̃2 = 0.57839768442329638

...

x12 = 0.09087314399975

x̃12 = 0.23296388576409

We see that a perturbation of 10−13 leads to a deviation in the first digit after only 12
iterations. To illustrate criterion 2, we can construct a periodic orbit arbitrarily close to
any initial condition by introducing a repeating decimal. For the initial condition x0 above,
for instance, a periodic orbit that differs from x0 only in the 11th digit is:

x̃0 = 0.2757839768 2757839768 2757839768 . . .

To illustrate criterion 3, we construct an orbit that passes arbitrarily close to every point
in the unit interval D = [0, 1]. To do so, we introduce an ordering on all rational numbers
in D having a finite decimal representation as follows:

0.0 0.1 0.2 . . . 0.9

0.00 0.01 0.01 . . . 0.99

0.000 0.001 0.002 . . . 0.999

. . .

Subsequently we construct an initial condition by concatenating the digits following the
decimal to obtain

x0 = 0.012345678900010203 · · · 9899000001002 · · · 998999 · · ·

The iterates of our map eventually approximate any real number to arbitrarily many digits.
Consequently, the map satisfies all three conditions and is chaotic.

The logistic map is also chaotic for certain values of r.

3.2 Equilibria and stability for differential equations

Analogous to fixed points of maps, the simplest solutions of differential equations are
equilibria. The study of equilibria and the behavior of solutions near equilibria are of
fundamental importance to our understanding of model dynamics.
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Definition 4 A point y∗ ∈ D satisfying f(y∗) = 0 is an equilibrium of the autonomous
differential equation y′ = f(y). In particular, the initial value problem with y(0) = y∗ has
solution y(t) ≡ y∗.

Example. The differential equation (2.13) has a unique equilibrium at the origin. The Verhulst
model (1.2) has two equilibria according to the two solutions of

f(P ) = rP (1− P/Pc) = 0 ⇒ P ∗ = 0 or P ∗ = Pc.

These correspond to the biological states of extinction and full saturation of the environment, respec-
tively.

Just as with maps, we shall be particularly interested in determining cases in which solu-
tions that start in the neighborhood of an equilibrium stay there, and in which solutions
that start in a neighborhood of an equilibrium leave that neighborhood.

Definition 5 The equilibrium y∗ is Lyapunov stable equilibrium if for every ε > 0 there
exists a δ > 0 such that

‖y(t)− y∗‖ < ε,∀t > 0, whenever ‖y(0)− y∗‖ < δ.

Otherwise, y∗ is an unstable equilibrium. The equilibrium y∗ is asymptotically stable if, in
addition, there exists a δ∗ > 0 such that limt→∞ ‖y(t)−y∗‖ = 0 whenever ‖y(0)−y∗‖ < δ∗.

Example. For the linear differential equation (2.9), the origin is stable if a < 0, since we can
choose δ = ε. If a > 0, the origin is unstable:

y′ = ay, y∗ = 0 is

{
stable, a < 0
unstable, a > 0.

(3.2)

For the Verhulst model (1.2) with r > 0, we have P ′(t) < 0 for P < 0 or P > Pc and P ′(t) > 0 for
0 < P < Pc. Consequently, the equilibrium at P = 0 is unstable and the equilibrium at P = Pc is
stable.

Let us write the solution in the neighborhood of an equilibrium as y(t) = y∗ + η(t),
where η(t) represents the perturbation from equilibrium. Substituting this solution into the
differential equation and expanding f in a Taylor series around y∗ yields

d

dt
(y∗ + η(t)) = f(y∗ + η(t)) = f(y∗) + f ′(y∗)η(t) +

1

2
f ′′(y∗)η(t)2 + · · · .

We assume that η is small and disregard terms of order η2 and higher.1 Then, since
d
dt
y∗ = f(y∗) = 0, the above expression leads to the linear differential equation governing

the perturbation
dη

dt
= f ′(y∗)η.

1In the stable case η(t)→ 0 and this approximation is justified. In the unstable case, the linearization
fails.
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Since f ′(y∗) is constant, this differential equation is of the form (2.9), and the stability
of the origin is determined by (3.2). If f ′(y∗) < 0, then the perturbation η(t) will decay
to zero, and y∗ is stable. If f ′(y∗) > 0, then the perturbation η(t) will grow, and the
assumption that η is small will no longer hold. If f ′(y∗) = 0, then we can say nothing
about the stability based on these considerations. The reasoning is summarized in the
following.

Theorem 3.2.1 An equilibrium y∗ of a scalar differential equation y′ = f(y) is asymptot-
ically stable if f ′(y∗) < 0 and unstable if f ′(y∗) > 0.

A similar statement holds for systems of differential equations. However, we must deter-
mine how to properly generalize the idea of the “sign of the derivative” to higher dimen-
sions. More on this in Chapter 4.

The essence of our definition of stability above is that an equilibrium is stable when so-
lutions emanating from a neighborhood of the equilibrium remain in a neighborhood of
the equilibrium, and that this statement continues to hold as the neighborhoods are taken
smaller and smaller.

For the problem (2.9), the solution is y(t) = y0 exp(at). If a < 0, then

|y(t)| = eat|y(0)| < |y(0)|,

and more generally
|y(t)| < |y(s)|, ∀t > s.

Consequently, the interval [−δ, δ] is invariant for any δ > 0. Conversely, if a > 0, then
|y(t)| = exp(at)|y(0)| > |y(0)|, |y(t)| > |y(s)| for all t > s. No finite interval is invari-
ant.

3.3 Equilibria and stability for Euler’s method

In this section we give a first impression of the stability of Euler’s method. This subject will
be treated in more generality in Chapter 4, and there we will also discuss other numerical
methods.

Suppose that f(yn) = 0. Then Euler’s method gives

yn+1 = yn + ∆t f(yn) = yn,

i.e., such a yn is a fixed point of Euler’s method. Conversely, suppose y∗ is a fixed point of
Euler’s method. Then,

y∗ = y∗ + ∆t f(y∗) ⇒ f(y∗) = 0,



36 CHAPTER 3. MODELS ON THE REAL LINE

that is, y∗ is an equilibrium of the vector field f . In conclusion, y∗ is a fixed point of Euler’s
equation if and only if y∗ is an equilibrium of the differential equation being solved.

Applying Theorem 3.1.1 we see find that y∗ is asymptotically stable if

|1 + ∆tf ′(y∗)| < 1 ⇒ −2 < ∆tf ′(y∗) < 0.

The equilibrium y∗ is asymptotically stable for the differential equation under Theorem
3.2.1 if f ′(y∗) < 0. Under this condition, y∗ is an asymptotically stable equilibrium of
Euler’s method if the stepsize satisfies the condition

0 < ∆t <
2

−f ′(y∗)
.

Be careful! This condition is only applicable for scalar, differential equations. The general
case will be handled in Chapter 4. Nevertheless, an important observation is that in the
case of Euler’s method, stability depends on both the stability of the underlying differential
equation and the step size ∆t.



Chapter 4

Models in higher dimensions

4.1 Time series and phase space

A solution to an autonomous system of differential equations in d dimensions

dy

dt
= f(y), y(t) ∈ D ⊂ Rd (4.1)

is a vector-valued function of time y(t). For each time t, we can think of the components of
y, i.e. y(1)(t), y(2)(t), . . . , y(d)(t) as the coordinates of a point in d-dimensional space:

(y(1)(t), y(2)(t), . . . , y(d)(t)) ∈ Rd

As the solution evolves in time, the point moves in D ⊂ Rd, tracing out a curve. Such a
solution curve is referred to as a trajectory or orbit. Due to the existence and uniqueness
theorem, there is precisely one trajectory passing through each point in D, and the curves
may not cross each other, as the intersection of two distinct trajectories at a point would
imply an initial condition with two solutions. In this context we refer to Rd as the phase
space. For the specific case d = 2, we refer to R2 as the phase plane. We can get a good
idea of how solutions to (4.1) behave by plotting several solutions in the phase plane. Such
a plot is called a phase portrait. A function f(y) : Rd → Rd assigns to each point y in the
phase plane a vector f(y) ∈ Rd, a vector field.

Example. A pendulum of length ` makes an angle θ(t) with the downward vertical. The gravita-
tional acceleration is g. The equation for pendulum motion is a second order differential equation

d2θ

dt2
= −g

`
sin θ.

With the angular velocity v = dθ
dt the system is written in first order form

dθ

dt
= v,

dv

dt
= −g

`
sin θ.

Some solutions (with g/` = 1) as functions of time t and in the phase plane are plotted in Figure
4.1.

37
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Figure 4.1: Solutions of the pendulum: (top left) time series solution showing θ(t) and
v(t) as functions of t; (top right) the vector field f(θ, v) = (v,− sin θ)T ; (bottom left) some
phase trajectories (θ, v); (bottom right) phase portrait. Initial conditions are identified
with a circle.
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4.2 Linear recursions in Rd.

To understand recursions in Rd for d > 1, it is instructive to first study linear recursions.
However, linear recursions are also important in their own right: we will meet an important
class of linear recursions in the form of Markov chains in Chapter 6.

4.2.1 Eigenvector decomposition

A general linear recursion in Rd, d > 1 takes the form

xn+1 = Axn,

where A is a d × d matrix. The solution of this recursion can easily be determined by
induction. It is

xn = Anx0.

We suppose that A has d independent eigenvectors vi ∈ Cd, i = 1, . . . , d, each with
corresponding eigenvalue λi ∈ C, satisfying

Avi = λivi, i = 1, . . . , d. (4.2)

(Recall that the eigenvalues and eigenvectors of a generic matrix A are complex even when
A is a real matrix.) Since the vi can be chosen independently, every vector in Rd and in
particular x0 can be written as a linear combination of the vi:

x0 = γ1v1 + γ2v2 + · · ·+ γdvd, γi ∈ C.

Note that Anvi = λni vi. Consequently, the solution to the recursion is

xn = Anx0 = γ1λ
n
1v1 + γ2λ

n
2v2 + · · ·+ γdλ

n
dvd

We say that λ1 is a dominant eigenvalue if |λj| < |λ1|, for all j > 1. Suppose A has
dominant eigenvalue λ1. Then we can rewrite the solution above as

xn = γ1λ
n
1

(
v1 +

γ2

γ1

λn2
λn1
v2 + · · ·+ γd

γ1

λnd
λn1
vd

)
Since λ1 is dominant, we find1

lim
n→∞

λnj
λn1

= lim
n→∞

(
λj
λ1

)n
= 0.

1Write λj = rje
iθj . Then

λj

λ1
=

rj
r1
ei(θj−θ1), where rj < r1 and |ei(θj−θ1)| = 1. Consequently, the

quotient has modulus less than unity and limn→∞(
λj

λ1
)n = 0.



40 CHAPTER 4. MODELS IN HIGHER DIMENSIONS

Consequently,
xn ≈ γ1λ

n
1v1,

for large n. Specifically, the vector xn converges to the direction of the dominant eigenvector
v1. Furthermore, if |λ1| < 1, then limn→∞ |λ1|n = 0, and the origin is a stable equilibrium.
If λ1 = 1, then the vector γ1v1 is a stable equilibrium (i.e. xn → 0). If |λ1| > 1, then
the magnitude of xn grows unbounded, but in the biological context we may speak of a
stable population distribution since the ratio of individuals in any two population groups
is constant, equal to the ratio of the corresponding elements of the eigenvector.

Note that in the biological context (at least) the model is only sensible if the iterates xn
are nonnegative vectors (that is, each element of the vector xn must be nonnegative). In
particular this means that γ1λ

n
1v1 must be nonnegative, Since γ1v1 is a constant vector, it

follows that λ1 must be real and positive, and that it must be possible to choose γ1v1 to
be nonnegative as well.

4.3 Linear differential equations in Rd

Let us consider a linear initial vaue problem in Rd, d > 1

dy

dt
= Ay, y(0) = y0, (4.3)

where A is again a d × d real matrix. We again suppose that A possesses d independent
eigenvectors vi ∈ Cd, i = 1, . . . , d, each with associated eigenvalue λi ∈ C satisfying (4.2).
Since the vi form a basis, we can expand any vector y(t) as

y(t) = γ1(t)v1 + · · ·+ γd(t)vd (4.4)

uniquely in terms of the coefficients γj(t), j = 1, . . . , d. Substituting (4.4) into both sides
of (4.3) we find

dγ1

dt
v1 + · · ·+ dγd

dt
vd = γ1(t)Av1 + · · ·+ γd(t)Avd,

= γ1(t)λ1v1 + · · ·+ γd(t)λdvd,

Gathering terms yields(
dγ1

dt
− λ1γ1

)
v1 + · · ·+

(
dγd
dt
− λdγd

)
vd = 0.

The vectors are independent so all of the coefficients must equal zero, and consequently,

dγi
dt

= λiγi, i = 1, . . . , d. (4.5)
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In particular, from the relation (4.4) we can discern the quantities γj(0), j = 1, . . . , d, from
y0. The solutions of (4.5) are

γi(t) = eλitγi(0), i = 1, . . . , d.

Consequently the solution of the differential equation is

y(t) = γ1(0)eλ1tv1 + · · ·+ γd(0)eλdtvd.

Clearly the origin is an equilibrium. Since A is invertible, it is also the unique equilibrium.
Suppose, without loss of generality, that the eigenvalues are ordered such that Reλ1 >
Reλ2 ≥ Reλ3 ≥ · · · ≥ Reλd. We rewrite the above relation as

y(t) = γ1(0)eλ1t
(
v1 +

γ2

γ1

e(λ2−λ1)tv2 + · · ·+ γd
γ1

e(λd−λ1)tvd

)
.

Clearly2

lim
t→∞

e(λj−λ1)t = 0, j > 1.

Consequently,
y(t) ≈ γ1(0)eλ1tv1, t� 0.

That is, the vector y(t) tends toward the direction of v1 for large t. Furthermore, if
Reλ1 < 0, then limt→∞ y(t) = 0, and the origin is stable. If Reλ1 = 0, then the norm of
y(t) is constant, and the origin is Lyapunov stable but not asymptotically so. Finally, if
Reλ1 > 0, then y(t) grows in magnitude without bound, and the origin is unstable.

4.4 Nonlinear recursions in Rd

In this section we extend the stability results for linear recursions to nonlinear recursions,
and provide an important application.

4.4.1 Multivariate Taylor series and the Jacobian matrix

For the material that follows, we need the multivariate form of Taylor series. For simplicity,
we consider first a scalar function f(x, y) : R2 → R of two variables and a perturbation
(ξ, η). Expanding first with respect to x yields

f(x+ ξ, y + η) = f(x, y + η) +
∂f

∂x
(x, y + η)ξ +

1

2!

∂2f

∂x2
(x, y + η)ξ2 + · · ·

2To see that limit holds for negative real part, let z = −x+ iy where x and y are positive real numbers.
Then ezt = limt→∞ e−xteiyt = e−xt(cos yt+ i sin yt) and consequently limt→∞ ezt = 0.
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Next each term on the right is expanded with respect to y:

f(x, y + η) = f(x, y) +
∂f

∂y
(x, y) η +

1

2!

∂2f

∂y2
(x, y) η2,

∂f

∂x
(x, y + η) ξ =

∂f

∂x
(x, y) ξ +

∂2f

∂x∂y
(x, y) ξ η + · · · ,

∂2f

∂x2
(x, y + η) ξ2 =

∂2f

∂x2
(x, y) ξ2 + · · · .

Combining these and suppressing the coordinates (x, y) gives

f(x+ ξ, y + η) = f +
∂f

∂x
ξ +

∂f

∂y
η +

1

2!

∂2f

∂x2
ξ2 +

∂2f

∂x∂y
ξ η +

1

2!

∂2f

∂y2
η2 + · · ·

With a lot of patience, one can work out the general form of Taylor series for a vector
function f(y) : Rd → Rd:

f(y + η) = f(y) +Df(y) η + · · · (4.6)

Here, the Jacobian matrix Df(y) associated with a vector function of a vector variable
f(y) : Rd → Rd, is the matrix of partial derivatives:

Df(y) =


∂f (1)

∂y(1)
∂f (1)

∂y(2)
. . . ∂f (1)

∂y(d)

∂f (2)

∂y(1)
∂f (2)

∂y(2)
. . . ∂f (2)

∂y(d)

...
...

...
...

∂f (d)

∂y(1)
∂f (d)

∂y(2)
. . . ∂f (d)

∂y(d)

 . (4.7)

The Jacobian is the appropriate generalization of the derivative f ′(y) required for stability
of nonlinear maps and differential equations.

Example. The Lorenz attractor is conceptual model of fluid convection. It is commonly used to
as a differential equation exhibiting chaos. The Lorenz model is

dx

dt
= σ(y − x), (4.8)

dy

dt
= x(ρ− z)− y, (4.9)

dz

dt
= xy − βz, (4.10)

where σ, ρ and β are positive constants. (E.N. Lorenz studied the case ρ = 28, σ = 10, and β = 8/3
for which all trajectories approach a so-called “strange attractor”). The Jacobian matrix for the Lorenz
model is obtained by taking partial derivatives of the right hand sides of the above equations:

Df(x, y, z) =

 −σ σ 0
ρ− z −1 −x
y x −β

 . (4.11)

We will make use of this matrix shortly.
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4.4.2 Fixed points and stability

Just as in the scalar case, an equilibrium or fixed point of a recursion in Rd is a point
α ∈ D satisfying

α = F (α).

To establish the stability of a fixed point, we again introduce a local representation

xn = α + ηn,

substitute this into the recursion and expand in Taylor series

α + ηn+1 = F (α + ηn) = F (α) +DF (α)ηn + . . . ,

where DF (x) denotes the Jacobian matrix (4.7) of partial derivatives of F (x). Ignoring
terms of quadratic and higher order in ηn, this reduces to

ηn+1 = DF (α)ηn.

Again the eigenvalues of DF can be used to establish stability.

Theorem 4.4.1 Let F (x) be continuously differentiable at a fixed point α = F (α). Let
λj, j = 1, . . . , d, be the eigenvalues of the Jacobian DF (α) of F (x) at α. Then

• α is asymptotically stable if |λj| < 1 for all j,

• α is unstable if |λj| > 1 for some j.

The theorem says nothing about the case |λj| ≤ 1, j = 1, · · · , d, with |λk| = 1 for some
1 ≤ k ≤ d. Other analysis must be used to determine stability in these cases.

4.4.3 An application: Newton’s method

An important example of a nonlinear recursion is Newton’s method (or the Newton-
Raphson method) for finding a zero (root) of a nonlinear system of equations. Suppose that
we wish to find a zero of G(x) : Rd → Rd, where G is continuously differentiable. Further
suppose that after n iterations of Newton’s method we have an estimate xn = x∗ − δn of
a root G(x∗) = 0 of G. We do not know δn explicitly, or we would know x∗. However we
can approximate it using Taylor series,

0 = G(x∗) = G(xn + δn) +DG(xn)δn + · · · ,

where the ellipses denote terms of quadratic and higher order in δn. If we assume that δn is
small and that the tensor of second derivatives is bounded in the neighborhood of x∗, then



44 CHAPTER 4. MODELS IN HIGHER DIMENSIONS

neglecting these terms is an acceptable approximation, and we can define a new iterate to
be xn+1 ≈ xn + δn, or

xn+1 = xn − (DG(xn))−1G(xn). (4.12)

Newton’s method is a very powerful means of finding a root, because it can be shown
that the error en = ‖x∗ − xn‖ converges quadratically in the limit of large n: en+1 = e2

n.
On the other hand, the rapid convergence must be weighed against the computational
cost of solving a system of linear algebraic equations with the Jacobian matrix in each
iteration.

4.5 Nonlinear differential equations in Rd

Let y∗ be an equilibrium of the autonomous differential equation y′ = f(y), i.e. f(y∗) = 0.
Let η(t) denote a perturbation solution and y(t) = y∗+ η(t). Inserting this solution in the
differential equation and expanding in Taylor series (4.6) yields

dy

dt
=

d

dt
(y∗ + η(t)) = f(y∗ + η(t)) = f(y∗) +Df(y∗)η(t) + · · ·

Ignoring the higher order terms, and noting d
dt
y∗ = f(y∗) = 0, the equation for the pertur-

bation reduces to
dη

dt
= Df(y∗)η

Since the Jacobian Df(y∗) is a constant matrix, we are back in the setting of Section 4.3.
The following general linear stability theorem can be proved:

Theorem 4.5.1 Let f(y) be continuously differentiable at an equilibirum f(y∗) = 0 of the
autonomous differential equation y′ = f(y). Let λj, j = 1, . . . , d, be the eigenvalues of the
Jacobian Df(y∗) of f(y) at y∗. Then

• y∗ is asymptotically stable if Reλj < 0 for all j,

• y∗ is unstable if Reλj > 0 for some j.

In particular the theorem tells us nothing about the case of imaginary eigenvalues.

Example. The Lorenz model (4.8)–(4.10) has three equilibria:

x = y = z = 0, x = y = ±
√
β(ρ− 1), z = ρ− 1.

For instance, at the equilibrium (0, 0, 0), the Jacobian (4.11) becomes

Df(0, 0, 0) =

−σ σ 0
ρ −1 0
0 0 −β

 .
This matrix has all negative eigenvalues if ρ < 2. Otherwise it has at least one eigenvalue with positive
real part, for which case the origin is an unstable equilibrium.
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4.5.1 Summary of stability criteria for maps and differential equa-
tions

It is prudent to pause for a moment and compare the stability criteria for equilibria of
iterated maps and differential equations.

Given a fixed point x∗ of an iterated map, to analyze its stability we compute the Jacobian
matrix DF (x∗) and determine its eigenvalues λi, i = 1, . . . , d. From Theorem 4.4.1 the
fixed point is stable if these all have modulus less than unity:

|λi| < 1, i = 1, . . . , d.

In contrast, if y∗ is an equilibrium of a differential equation, to analyze its stability we
again compute the Jacobian matrix Df(y∗) and determine its eigenvalues µi, i = 1, . . . , d.
From Theorem 4.5.1 the equilibrium is stable if all eigenvalues lie strictly in the left half
of the complex plane:

Reµi < 0.

The binding factor is the exponential function which maps the left half-plane into the unit
circle, i.e. | exp(z)| < 1 if Re z < 0. Essentially this is because the exponential function
provides the time-t solution map of a linear differential equation (recall Section 1.4), and our
analysis is based on linearization. That is, given the linear differential equation dy

dt
= µy,

the time-∆t solution is y(t + ∆t) = exp(∆tµ)y(t). Viewing the solution as an iterated
map, its “eigenvalue” is precisely λ = exp(∆tµ). Hence, if µ is in the left half-plane,
|λ| < 1.

This is often a source of some confusion among students new to the subject.

4.6 Application to numerical integrators

4.6.1 Fixed points of numerical methods

In the previous section we have devoted a lot of attention to the equilibria of differential
equations and maps. Considering the significance of equilibria, we would like them to be
preserved by the numerical method. Given an autonomous differential equation, denote
by F the set of equilibria

F = {y ∈ Rd : f(y) = 0}.

For a numerical method with map Ψ∆t(y), the fixed points may depend on ∆t as well as
f . We denote the set of fixed points of Ψ∆t(y) by F∆t:

F∆t = {y ∈ Rd : Ψ∆t(y) = y}.
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An important practical question is whether the sets F and F∆t coincide.

Consider Euler’s method (2.16):

Ψ∆t(y) = y + ∆tf(y).

Suppose y ∈ F . Then f(y) = 0 and therefore Ψ∆t(y) = y. Thus, F ⊆ F∆t. Suppose,
conversely, that y ∈ F∆t. Then, Ψ∆ty = y = y + ∆tf(y), so ∆tf(y) = 0. It follows that
for ∆t > 0, F∆t ⊆ F and therefore, for Euler’s method, F∆t = F .

As a second example, consider the “implicit midpoint rule”

yn+1 − yn
∆t

= f

(
yn+1 + yn

2

)
.

First, suppose yn and yn+1 are such that (yn+1 + yn)/2 is an equilibrium. The right hand
side evaluates to zero and therefore (for positive ∆t) yn+1 = yn, i.e. yn is a fixed point of
the method. Thus, F ⊆ F∆t. Conversely, if yn is a fixed point of the implicit map Ψ∆t,
then yn+1 ≡ yn and the left side evaluates to zero. We are left with f(yn+1) = f(yn) = 0,
so again F∆t ⊆ F and the sets are equivalent.

Next, consider take the “extrapolated” Euler method:

yn+1 = yn + ∆tf (yn + ∆tf(yn)) .

It is clear that if f(yn) = 0, then yn+1 = yn, so F ⊆ F∆t here. The converse is not
necessarily true, however, as we illustrate next. We apply this method to the Verhulst
model (1.2) with r = 1:

y′ = y(1− y)

to obtain the map

Ψ∆t(y) = y + ∆t [y + ∆ty(1− y)] [1− y −∆ty(1− y)] .

For y ∈ F∆t we have

[y + ∆ty(1− y)] [1− y −∆ty(1− y)] = 0,

so one of the terms in square brackets must equal zero. In the first case, we have

y(1 + ∆t(1− y)) = 0 ⇒ {y = 0 or y = 1 +
1

∆t
},

In the second case,

1− y −∆ty(1− y) = 0 ⇒ {y = 1 or y =
1

∆t
}.

Hence, F∆t = {0, 1, 1 + ∆t−1,∆t−1}. The fixed points 1 + ∆t−1 and ∆t−1, which are not
equilibrium points, are termed extraneous fixed points. Note that the extraneous fixed
points grow unbounded as the time step is refined.
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While the set of fixed points of a numerical method F∆t = {y ∈ Rd : y = Ψ∆t(y)} is not
generally the same as the set of fixed points F = {y ∈ Rd : f(y) = 0} of the flow map, for
many classes of methods, the fixed points of the numerical method are a superset of those
of the flow map: F∆t ⊇ F .

Thus F∆t includes all the fixed points of F but it may have some extraneous ones. Notice
that the existence of extraneous fixed points depends not only on the method but on the
differential equation we are solving.

You might think that a method which admits extraneous fixed points would be of limited
interest, since it is then quite possible that a numerical trajectory converges to a point
that is nowhere near the stable equilibria of the original dynamical system. Nonetheless,
such methods are used frequently in dynamical systems studies.

The reason that we can use methods like this is that in general (as in the example above),
as ∆t → 0, all the extraneous fixed points tend to infinity. This gives us a simple way
to test for extraneous fixed points: we simply vary the timestep and solve the problem
repeatedly. The fixed points which stay put regardless of stepsize are genuine.

4.6.2 Linear stability of numerical methods

For a linear system of ODEs
dy

dt
= Ay,

where A is a d× d matrix with d linearly independent eigenvectors, we have seen that the
general solution can be written in the compact form

y(t) =
d∑
i=1

γi(0)eλitvi,

where λ1, λ2, . . . , λd are the eigenvalues, v1, v2, . . . , vd are the corresponding eigenvectors,
and γ1(0), γ2(0), . . . , γd(0) are coefficients. We have seen that, if all the eigenvalues have
negative real part, then the origin is asymptotically stable.

A related statement can be shown to hold for many of the numerical methods in common
use. For example, consider Euler’s method applied to the linear problem dy

dt
= Ay:

yn+1 = yn + ∆tAyn = (I + ∆tA)yn.

If we let yn be expanded in the eigenbasis (say v1, v2, . . . , vd), we may write

yn = α(1)
n v1 + α(2)

n v2 + . . .+ α(d)
n vd.

If we now apply Euler’s method, we find

yn+1 = (I + ∆tA)(α(1)
n v1 + α(2)

n v2 + . . .+ α(d)
n vd),

= α(1)
n (I + ∆tA)v1 + α(2)

n (I + ∆tA)v2 + . . .+ α(d)
n (I + ∆tA)vd



48 CHAPTER 4. MODELS IN HIGHER DIMENSIONS

Now, since vi is an eigenvector of A, we have

(I + ∆tA)vi = vi + ∆tAvi = vi + ∆tλivi = (1 + ∆tλi)vi

and this implies

yn+1 =
d∑
i=1

α(i)
n (1 + ∆tλi)vi.

We may also write

yn+1 =
d∑
i=1

α
(i)
n+1vi,

and, comparing these last two equations and using the uniqueness of the basis representa-
tion, we must have

α
(i)
n+1 = (1 + ∆tλi)α

(i)
n , i = 1, 2, . . . , d.

It follows from this that the origin is a stable point if |1 + ∆tλi| ≤ 1, i = 1, 2, . . . , d, and
is asymptotically stable if |1 + ∆tλi| < 1, i = 1, 2, . . . , d. The condition for stability can
be stated equivalently as requiring that for every eigenvalue λ of A, ∆tλ must lie inside a
disk of radius 1 centered at z = −1 in the complex plane. This region is sketched below.
We call it the region of absolute stability of Euler’s method.

Thus, given the set of eigenvalues of A, this condition implies a restriction on the maximum
stepsize ∆t that can be used if the origin is to remain stable for the numerical map. This
is illustrated in Figure 4.2.

4.6.3 Stability functions

To develop a general theory, let us consider first the scalar complex case. When applied to
y′ = λy, λ ∈ C, Euler’s method has the form

yn+1 = R(∆tλ)yn,

where R(µ) = I + µ.

More generally, a very large class of one-step methods, when applied to the scalar complex
equation

y′ = λy, λ ∈ C

take the form

yn+1 = R(∆tλ)yn,

where R(µ) is a rational function of µ, i.e. the ratio of two polynomials

R(µ) = P (µ)/Q(µ),
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Euler stability region
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Figure 4.2: The spectrum of A is scaled by ∆t. Stability of the origin is recovered if ∆tλ
is in the region of absolute stability |1 + z| < 1 in the complex plane.

where P and Q are two polynomials. R is called the stability function of the one-step
method.

For example, consider the trapezoidal rule (2.21):

yn+1 = yn +
∆t

2
(λyn + λyn+1).

Solving for yn+1 gives

yn+1 =
1− ∆t

2
λ

1 + ∆t
2
λ
yn,

from which follows that R(µ) = 1+µ/2
1−µ/2 .

Theorem 4.6.1 Given the differential equation y′ = Ay, where the d× d matrix A has d
independent eigenvectors and the eigenvalues λ1, λ2, . . . , λd, consider applying a one step
method. The method has a stable (asymptotically stable) fixed point at the origin when
applied to

dy

dt
= Ay,
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if and only if the same method has a stable (asymptotically stable) equilibrium at the origin
when applied to each of the scalar differential equations

dz

dt
= λiz, for all i.

Since we know that a one-step method applied to dz
dt

= λz can be written

zn+1 = R(∆tλ)zn

we have the following corollary:

Corollary 4.6.1 Consider a linear differential equation dy
dt

= Ay with diagonalizable ma-
trix A. Let a one-step method be given with stability function R. The origin is stable for
the numerical method applied to dy

dt
= Ay (at stepsize ∆t) if and only if

|R(µ)| ≤ 1

for all µ = ∆tλ, λ an eigenvalue of A.

4.6.4 Stability regions

Evidently the key issue for understanding the long-term dynamics of one-step methods
near fixed points concerns the region where R̂(µ) = |R(µ)| ≤ 1. This is what we call the
stability region of the numerical method. Let us examine a few stability functions and
regions:

Euler’s Method:

R̂(µ) = |1 + µ|

The stability region is the set of points such that R̂(µ) ≤ 1. The condition

|1 + µ| ≤ 1

means µ lies inside of a disc of radius 1, centred at the point −1.

Trapezoidal rule: the stability region is the region where:

R̂(µ) =

∣∣∣∣1 + µ/2

1− µ/2

∣∣∣∣ ≤ 1.

This occurs when

|1 + µ/2| ≤ |1− µ/2|,

or, when µ/2 is closer to −1 than to 1, which is just the entire left complex half-plane.
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Another popular method is the implicit Euler method,

yn+1 = yn + hλyn+1

R̂(µ) = |1− µ|−1.

which means the stability region is the exterior of the disk of radius 1 centered at 1 in the
complex plane. These are some simple examples. All three of these are graphed in Figure
4.3.
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Figure 4.3: Stability Regions: (a) Euler’s method, (b) trapezoidal rule, (c) implicit Euler

What do these diagrams tell us? Consider first a scalar differential equation dx
dt

= λx, with
possibly complex λ. We know that for the differential equation, the origin is stable for λ
lying in the left half plane. For a numerical method, the origin is stable if ∆t λ lies in the
stability region. This is not usually going to happen independent of ∆t, even if λ lies in
the left half plane. For the methods seen above, this is true of trapezoidal rule and implicit
Euler. For Euler’s method the origin is only stable for the numerical method provided ∆t
is suitably restricted. Note that, in the case of Euler’s method, if λ lies strictly in the left
half plane, there exists ∆t a sufficiently small to have R̂(∆tλ) < 1, since the rescaling of λ
by a smaller value of ∆t moves the point ∆tλ towards the origin.

On the other hand, observe that this will be impossible to achieve if λ lies on the imaginary
axis. Thus Euler’s method is a very poor choice for integrating a problem like dz/dt = iωz,
where ω is real.

A very valuable feature if we are interested in preserving the asymptotic stability of the
origin under discretization is if the stability region includes the entire left half plane. In this
case we say that the method is unconditionally stable. An unconditionally stable numerical
method has the property that the origin is stable regardless of the stepsize.



Chapter 5

Linear dynamics in the plane

5.1 Linear differential equations on R2

In this section we provide a rather complete analysis of the solutions of the system of
differential equations

dy(1)

dt
= a11y

(1) + a12y
(2) (5.1)

dy(2)

dt
= a21y

(1) + a22y
(2). (5.2)

In matrix form, we write this system as

dy

dt
= Ay, y =

(
y(1)

y(2)

)
, A =

[
a11 a12

a21 a22

]
. (5.3)

The analysis of the solutions of such systems is greatly simplified once we have found the
eigenvalues and eigenvectors of the matrix A. Recall that an eigenvector v and correspond-
ing eigenvalue λ satisfy

Av = λv.

The existence of such an eigenpair (λ, v) requires (A − λI)v = 0. This in turn requires
that the matrix A − λI be singular, with v in its null space. Hence, such λ necessarily
satisfy

0 = det(A− λI) = det

[
a11 − λ a12

a21 a22 − λ

]
= λ2 − (a11 + a12)λ+ (a11a22 − a12a21).

The terms in parentheses are the trace1 s = trA = a11 + a12 and determinant d = detA =
a11a22 − a12a21 of A. The characteristic polynomial is

λ2 − sλ+ d = 0, λ1,2 =
s

2
±
√
s2

4
− d, (5.4)

1The trace of a matrix is the sum of the elements on the main diagonal.

52
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where λ1,2 denote the two roots of the quadratic equation.

Since A is a real matrix, the coefficients of characteristic polynomial (5.4) are real, which
means that its roots are either real λ1,2 ∈ R, or a complex conjugate pair λ1 = λ̄2 ∈ C.
We treat all cases below:

5.1.1 Real, distinct eigenvalues

Suppose λ1 and λ2 are real and distinct. In this case the eigenvectors v1 and v2 are also real
and linearly independent. Any vector in R2 can be written uniquely as a linear combination
of v1 and v2. In particular,

y(t) = α1(t)v1 + α2(t)v2.

Substituting this vector function into the differential equation yields

dy

dt
=
dα1

dt
v1 +

dα2

dt
v2 = α1(t)Av1 + α2(t)Av2 = α1(t)λ1v1 + α2(t)λv2.

Since the projection onto v1 and v2 is unique, we can equate coefficients to give

dα1

dt
= λ1α1,

dα2

dt
= λ2α2

The solutions of these scalar differential equations are

α1(t) = eλ1tα1(0), α2(t) = eλ2tα2(0),

which leads to the general solution

y(t) = eλ1tα1(0)v1 + eλ2tα2(0)v2. (5.5)

Without loss of generality we assume that λ1 > λ2, and write

y(t) = eλ1t
(
α1(0)v1 + e(λ2−λ1)tα2(t)v2

)
.

The exponent in the second term in parentheses is negative by assumption, and in the limit
t → ∞, it decays to zero faster than the first term. Therefore we expect that for large t,
the solution will point approximately in the direction of the first eigenvector v1:

y(t) ≈ eλ1tα1(0)v1, for t� 0.

Since A is nonsingular, the origin is the unique equilibrium for this system. The stability
of the origin depends on the eigenvalues. We distinguish three cases:

• Stable node: λ2 < λ1 < 0. Both terms in (5.5) decay monotonically to zero as t→∞.
The origin is stable.
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Figure 5.1: Stable nodes: canonical coordinates (left), transformed coordinates (right).

• Unstable node: 0 < λ2 < λ1. Both terms in (5.5) grow unbounded monotonically as
t→∞. The origin is unstable.

• Saddle λ2 < 0 < λ1. In this case, the first term v1 in (5.5) grows unbounded while
v2 decays to zero for large t→∞ whereas the opposite occurs for t→ −∞.

Example. Figure 5.1 shows phase plots (initial conditions denoted with a circle) for the cases

A =

[
−1.5

−0.8

]
, Ã =

[
−1.5 0.7

0 −0.8

]
. (5.6)

For A the eigenpairs are (λ1 = −0.8, v1 = (0, 1)T ) and (λ− 2 = −1.5, v2 = (1, 0)T ); for Ã these are
(λ1 = −0.8, v1 = (1, 1)T ) and (λ − 2 = −1.5, v2 = (1, 0)T ). The eigenvectors are plotted as solid
black lines in Figure 5.1. Note that for large t, the phase curves are tangent to v1 at the origin.

We establish that the solution of an autonomous differential equation with the vector field
negated, is a solution to the original differential in reversed time. Suppose y(t) solves the
initial value problem

y′(t) = f(y(t)), y(0) = y0, t ∈ [0, T ].

Define the function ȳ(t) = y(T − t). Taking the derivative of this function with respect to
t, applying the chain rule, and making use of the differential equation gives

d

dt
ȳ(t) = −y′(T − t) = −f(y(T − t)) = −f(ȳ(t)),

from which is follows that ȳ(t) solves the negated initial value problem

ȳ′(t) = −f(ȳ(t)), ȳ(0) = y(T ), t ∈ [0, T ]

with endpoint solution ȳ(T ) = y0. It follows that the phase plots for the differential
equations y′ = f(y) and y′ = −f(y) are identical, but with the directions of traversal



5.1. LINEAR DIFFERENTIAL EQUATIONS ON R2 55

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.2: Unstable node.

reversed. In particular, a stable equilibrium of y′ = f(y) is an unstable equilibrium of
y′ = −f(y) and vice versa. Also, trajectories emanating from an unstable equilibrium
converge upon it in backwards time as t→ −∞. The unstable node corresponding to the
matrix

A =

[
1.5

0.8

]
is shown in Figure 5.2. In the rest of this section we only show one orientation of the flow
(the stable one, when it exists).

Figure 5.3 illustrates saddle point phase plots corresponding to the matrices

A =

[
−1.5

0.8

]
, Ã =

[
−1.5 2.3

0 0.8

]
,

with the same eigenvectors as (5.6).

Real distinct eigenvalues occur for d < s2/4, since then the discriminant in (5.4) is positive.
In the trace-determinant parameter space (Figure 5.4), the real distinct eigenvalues occur
below the parabola d = s2/4. The case d < 0 corresponds to a saddle point, since d = λ1λ2.
For 0 < d < s2/4, the equilibrium is a node. The eigenvalues are like-signed, and since
s = λ1 + λ2, the node is stable if s < 0 and unstable if s > 0. The borderline cases will be
treated later.

If d > s2/4, then λ1,2 are complex conjugates, as are the eigenvectors v1,2

λ1,2 = µ± iθ, v1,2 = r + is

Again the solution is given by (5.5). Note that since eigenvectors remain eigenvectors
upon scaling, we can “absorb” the initial conditions α1,2(0) into v1,2 and further ignore
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Figure 5.3: Saddle points: canonical coordinates (left), transformed coordinates (right).
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Figure 5.4: The trace(s)-determinant(d) parameter space.
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Figure 5.5: Center point: canonical coordinates (left), transformed coordinates (right).

these terms. Then (5.5) can be written as

y(t) = e(µ+iθ)t(r + is) + e(µ−iθ)(r − is),
= eµt [(cos θt+ i sin θt)(r + is) + (cos θt− i sin θt)(r − is)] ,
= 2eµt [(cos θt)r − (sin θt)s] .

Consider first the case µ = 0 (purely imaginary eigenvalues). In this case the solution at
times t = kπ

2θ
, k = 0, 1, 2, . . . are

y(0) = r, y(
π

2θ
) = −s, y(

π

θ
) = −r, y(

3π

2θ
) = s, y(

2π

θ
) = r, . . .

Hence the solution is periodic. The equilibrium, called a center point, is shown in Figure 5.5.
Clearly, the equilibrium is Lyapunov stable according to our definition of stability.

Next, suppose µ < 0. Then the solution is as in the periodic case, except that the radius of
the orbit is exponentially decreasing. The solution spirals inward towards the equilibrium
as shown in Figure 5.6. In this case the equilibrium is called a stable focus. If µ > 0, the
trajectories spiral out away from the equilibrium, an unstable focus.

5.1.2 Degenerate cases

Finally, we consider a number of degenerate cases. The first is that of singular A:

A =

[
λ 0
0 0

]
.

Since A is singular, there is a nontrivial solution to Ay = 0, namely y = (0, 1)T . Any
initial condition on the y2 axis is an equilibrium. The corresponding differential equations
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Figure 5.6: Stable focus: canonical coordinates (left), transformed coordinates (right).

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.7: Singular flow (shear): canonical coordinates (left), transformed coordinates
(right).

are
dy1

dt
= λy1,

dy2

dt
= 0

If λ < 0, the trajectories tend to (0, y2) as t→ 0. See Figure 5.7.

The case d = s2/4 corresponds to the parabola in Figure 5.4. In this case, there may be
infinitely many eigenvectors or just one. The first case corresponds to a matrix A with
canonical form

A =

[
λ 0
0 λ

]
In this case, since A is a multiple of the identity, every vector is an eigenvector of A. The
solutions are y(t) = exp(λt)y(0). The stable case λ < 0 is shown in Figure 5.8.
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Figure 5.8: Node corresponding to λ1 = λ2 with independent eigenvectors.

Alternatively, A may have Jordan form

A =

[
λ 1
0 λ

]
.

In this case, there is a single eigenvector v = (1, 0)T . The corresponding differential
equations are

dy(1)

dt
= λy(1) + y(2),

dy(2)

dt
= λy(2).

The second of these has solution y(2)(t) = exp(λt)y(2)(0). Substituting this solution into
the first equation yields

dy(1)

dt
= λy(1) + exp(λt)y(2)(0).

To solve this differential equation, we multiply through by exp(−λt) and integrate

e−λt
dy(1)

dt
− λe−λty(1) = y(2)(0),

d

dt

[
e−λty(1)

]
= y(2)(0),∫ T

0

d

dt

[
e−λty(1)

]
dt =

∫ T

0

y(2)(0) dt,

e−λTy(1)(T )− y(1)(0) = y(2)(0)T,

y(1)(T ) = eλT (y(1)(0) + Ty(2)(0)).

Consequently the general solution is

y(1)(t) = eλt(y(1)(0) + ty(2)(0)),

y(2)(t) = eλty(2)(0).
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Figure 5.9: Node corresponding to a non-simple eigenvalue: canonical coordinates (left),
transformed coordinates (right).

In vector form,
y(t) = eλt(y(0) + ty(2)(0)v)

As t → ∞, the second term dominates and the trajectories approach the approximate
solution y(t) ≈ t exp(λt)y(2)(0)v. See Figure 5.9.

To summarize, the equilibrium is stable in all cases for which both eigenvalues satisfy
Reλ < 0. It is unstable if any of the eigenvalues has Reλ > 0.



Chapter 6

Markov chains

6.1 Graph theory of matrices and the Perron-Frobenius

Theorem

Following the reasoning of the previous section, we see that it is useful to have a means
of identifying when a matrix A possesses a dominant eigenvalue. The theorem at the end
of this section provides criteria for this, but we first need to understand some basic ideas
from graph theory.

Let A = (aij) denote a matrix with elements aij. By A ≥ 0 we mean aij ∈ R and aij ≥ 0
for all i, j = 1, . . . , d. Similarly we use the notation v ≥ 0 to denote a vector v whose
elements are real and nonnegative.

A directed graph consists of a set of vertices and a set of edges that express connections
between the vertices. For a d × d matrix we define d vertices. For every nonzero element
aij of A, we define a directed edge from j to i.

For an incidence matrix, aij = 1 if there is an edge from node j to node i, and aij = 0
otherwise. The nonzero element of the matrix Ap counts the number of paths of length p
between pairs of nodes. For instance, denote by A2

ij the element (i, j) of the matrix A2. If
A2
ij = 3 then there are three paths of length 2 connecting node j to node i.

Example. The incidence matrix of a Leslie matrix

A =


1 1 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 , (6.1)

has the associated graph shown in Figure 6.1. Due to the nonzero elements in the first row, there
is a directed edge from each vertex to vertex 1, including a self-directed edge (loop) from 1 to

61



62 CHAPTER 6. MARKOV CHAINS

itself. The nonzero elements on the first sub-diagonal imply edges from vertex j to vertex j + 1, for
j = 1, . . . , 4.

The matrices A2 and A3 are

A2 =


2 2 2 2 1
1 1 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 , A3 =


4 4 4 3 2
2 2 2 2 1
1 1 1 1 1
1 0 0 0 0
0 1 0 0 0

 .
For example, the two paths of length 2 to from node 2 to node 1 (i.e. A2

12 = 2) are (2→ 1→ 1) and
(2→ 3→ 1). The 4 paths of length 3 from node 3 to node 1 (i.e. A3

13 = 4) are: (3→ 1→ 1→ 1),
(3→ 1→ 2→ 1), (3→ 4→ 1→ 1), and (3→ 4→ 5→ 1).

For a weighted graph, each connection receives a weight aij. In this case, the edge weights
of a path are multiplied together, and the various paths added up.

Example. Consider the Leslie matrix with same nonzero structure as the previous example:

A =


φ1 φ2 φ3 φ4 φ5

σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 σ4 0

 , (6.2)

where the φi and σi are positive constants. In this case, the (1,2) element of A2 contains the sum of
the two weighted paths (2→ 1→ 1) and (2→ 3→ 1):

A2
12 = (2→ 1)× (1→ 1) + (2→ 3)× (3→ 1) = φ2φ1 + σ2φ3,

which is the same result as obtained through matrix multiplication.

21 3 4 5

21 3 4 5

!2

"1 "2 "3 "4

!3 !4 !5!1

Figure 6.1: Graph associated with the matrix (6.2).

A walk on a directed graph is a sequence of consecutive vertices connected by directed
edges, following the orientation of the edges. For example, in the graph in Figure 6.1, one
possible walk is (3→ 4→ 1→ 1→ 2→ 1). In particular, vertices and edges may appear
multiple times in a walk. The length of a walk is the number of “steps” taken, that is the
number of vertices visited excluding the starting vertex (including multiplicity). In the
above example, the walk has length 5 (i.e. {4, 1, 1, 2, 1}).
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21 3 4 5

Figure 6.2: This graph is reducible, since there are no walks from vertex 5 to any other
vertex, and it is of period 2, since all cycles have length 2 or 4.

The graph is irreducible if there exists a walk from every vertex to every other vertex.
Otherwise it is reducible. The graph in Figure 6.1 is irreducible. By comparison, the graph
in Figure 6.2 is reducible, because there is no walk from vertex 5 to any other vertex.

A cycle is a walk that starts and ends at the same vertex, but otherwise has no repeated
vertices. The periodicity of a graph is the greatest common divisor of the lengths of all
cycles. A graph with period one is called aperiodic. The graph in Figure 6.1 is aperiodic.
The graph in Figure 6.2 has period 2, since all cycles have even length. If a graph contains
a loop (edge from a vertex to itself), then this is a cycle of length one, and the graph is
aperiodic. Equivalently, if a matrix has a nonzero element on its main diagonal, then its
graph is aperiodic.

The following theorem allows us to establish when a linear recursion has a dominant eigen-
value. Its proof is beyond the scope of these notes.

Theorem 6.1.1 (Perron & Frobenius) Suppose A ≥ 0. Then:

1. A has a real eigenvalue λ1 ≥ 0 such that |λj| ≤ λ1, j = 2, . . . , d.

2. There exists a constant γ1 ∈ C such that associated eigenvector γ1v1 ≥ 0.

3. If A is irreducible and aperiodic, then λ1 is the dominant eigenvalue: ‖λj‖ < λ1,
j = 2, . . . , d, holds with strict inequality.

The theorem also shows when the linear recursion possesses a nonnegative eigenvector,
which may be important in applications where negative or complex values have no meaning
(for example, when the iterates xn denote population numbers or probabilities).

6.2 Probability vectors and transition matrices

A very important class of linear recursions are Markov chains. A Markov chain is a linear
probabilistic model of a system that attains only a finite number d of states. The probability
of observing the system in state j at discrete time n is denoted p

(j)
n . Since probabilities are
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never negative, and never greater than 1, we require 0 ≤ p
(j)
n ≤ 1. Also, since the system

must be found in one of the d states, we require

d∑
j=1

p(j)
n = 1

We prefer to work with vectors, and introduce the vector pn = (p
(1)
n , p

(2)
n , . . . , p

(d)
n )T to

denote the probabilities of all states at time n. We will also make use of the vectors
1 = (1, 1, . . . , 1)T ∈ Rd and ej to denote the jth canonical unit vector in Rd, i.e. the vector
whose elements are all zero except the jth element, which is 1 (equivalently, the jth column
of the identity matrix). Using this notation, the requirements on pn can be expressed as

0 ≤ eTj pn ≤ 1, ∀j, 1Tpn = 1. (6.3)

A vector satisfying these properties is called a probability vector.

A Markov chain specifies that the probabilities of observing the system in its various states
changes as a function of time. It is assumed that the system is likely to change from state
j to state i with probability Pij, and that this probability is independent of time. Given a
probability vector p0 over the possible states at time zero, the probabilities evolve according
to the recursion

pn+1 = Ppn, P = (Pij) (6.4)

where P is the transition matrix with elements Pij. To gain more understanding of this,
suppose our system is known to be in state j = 1 at time n = 0. We denote this as p0 = e1.
Then, according to (6.4), the probabilities of observing the system in each system state at
time n = 1 are given by

p1 = Pp0 = Pe1,

which is just the first column of the matrix P . In words, the first column of P , with
elements Pi1 specifies the likelihood of finding the system in each state i, given that the
system was in state j = 1 at the previous time. That is, Pi1 denotes the likelihood of a
transition from state 1 to state i. Similarly, if p0 = ej, then p1 = Pej is the jth column
of P , which specifies the likelihood of observing the system in state i given that was in
state j at the previous time. Hence Pij specifies the likelihood of a transition from state j
to state i. It also follows from this reasoning that the columns of P must be probability
vectors:

0 ≤ Pij ≤ 1,
∑
i

Pij = 1,∀j,

where column j specifies the likely states of the system at time n+ 1 given that it was in
state j at time n. We express this also as

P ≥ 0, 1TP = 1T . (6.5)

As an example, we consider a Markov chain model for weather prediction. We assume the
weather is observed in one of three mutually exclusive states: (1) sunshine, (2) overcast,
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and (3) rain. At time n, the probability of observing the weather in state j is given by

p
(j)
n . The transition matrix is

P =


1
2

1
6

1
2

1
2

1
3

0

0 1
2

1
2

 . (6.6)

The first column means that: following a sunny day, with equal likelihood, either another
sunny day or a cloudy day will be observed. The second column is interpreted as: following
a cloudy day, there is a 1/6 chance of a sunny day, a 1/3 chance of another cloudy day,
and a 1/2 chance of a rainy day. The third columns states that after rain, with equal
probability, it either rains again or (“after rain comes sunshine”) sunshine follows. Figure
6.3 illustrates the graph associated with P .

I2

I1

I3

I5 I4

21 3 4 5

1/2

1/2

1/2 1/2

1/2

1/6

1/3

1/3

1/2

1/6

1/2

1/2
Figure 6.3: Graph of the transition matrix (6.6) of the weather model.

The following theorem ensures that the Markov chain is well defined, and gives us a condi-
tion for the existence of a stable steady state (i.e. a background “climate” for our weather
model).

Theorem 6.2.1 Let P ∈ Rd×d be a transition matrix satisfying (6.5) with eigenvalues λj,
j = 1, . . . , d. Let p0 be a probability vector, and pn be the solution of the Markov chain
(6.4). Then,

1. pn is a probability vector for all n.

2. λ1 = 1 is an eigenvalue of P , and |λj| ≤ λ1, for all j.

3. if P is in addition irreducible and aperiodic, then λ1 = 1 is the dominant eigenvalue.

Proof The elements of p1 are

p
(j)
1 =

d∑
k=1

Pjkp
(k)
0 .
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Since each term in the the sum is a product of nonnegative elements, the sum is nonnega-
tive. Furthermore, using (6.5) and (6.3),

1Tp1 = 1TPp0 = 1Tp0 = 1.

Consequently, p1 is again a probability vector. That pn is also a probability vector for all
n follows by induction. This establishes conclusion 1 of the theorem.

Note that taking the transpose of the second relation in (6.5) gives

P T1 = 1,

from which follows immediately that λ1 = 1 is an eigenvalue of P T . But since, for an
arbitrary square matrix A,

det(A− λI) = det(AT − λI),

the characteristic polynomials of any square matrix A and its transpose AT are identical,
and have identical roots. Hence A and AT have the same eigenvalues. In particular λ1 = 1
is an eigenvalue of P .

Next, we define the absolute value of a vector or matrix to hold element-wise:

|v| = (|v1|, . . . , |vd|)T

Now, taking absolute values the following inequality holds, where λ is an eigenvalue of P
with associated eigenvector v:

|λ||v| = |λv| = |Pv| ≤ P |v|. (6.7)

The last relation follows from the triangle inequality, i.e. for the ith row,

|Pv|i = |
d∑
j=1

Pijvj| = |Pi1v1 + · · ·+ Pidvd| ≤ |Pi1v1|+ · · ·+ |Pidvd|.

Furthermore, since the Pij are nonnegative, we can extract them from the absolute values.
Now, multiplying both sides of inequality (6.7) by 1T gives

|λ|1T |v| ≤ 1TP |v| = 1T |v|.

From which follows |λ| ≤ 1 for all eigenvalues of P . This establishes conclusion 2 of
the theorem. (Alternatively, we can apply Theorem 6.1.1. Since P ≥ 0, there exists a
nonnegative, real eigenvalue λ1 ≥ |λj| with associated nonnegative, real eigenvector v1.
For this pair, we have

λ11
Tv1 = 1T (λ1v1) = 1TPv1 = 1Tv1

from which follows λ1 = 1.)

Conclusion 3 is an immediate consequence of conclusions 1 and 2 and Theorem 6.1.1. �
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How can we use this model? Suppose we wish to know what the likelihood of rain is five
days after a sunny day. To determine this, we choose p0 = e1, which specifies that the sun
is shining with probability one on day 0. The likelihoods of the various weather states five
days later is given by p5,

p5 = P 5p0 = P 5e1.

The likelihood of rain is the third component of p5, i.e. p
(3)
5 = eT3 p

5:

p
(3)
5 = eT3 P

5e1.

Equivalently, the likelihood is given by element (3, 1) of the matrix P 5.

6.3 Defective transition matrices

We can also address a question like: what is the likelihood that it rains for the first time
5 days after sunshine? To determine this, we want to consider the joint probability of all
walks of length 5 originating at vertex 1 and ending precisely at vertex 3, that do not visit
vertex three prior to the 5th step. We can achieve this by removing all edges leaving vertex
3.1 The resulting graph is shown in Figure 6.4. The associated matrix is

P̃ =


1
2

1
6

0
1
2

1
3

0

0 1
2

0

 .
Such a matrix satisfying

P̃ ≥ 0, 1T P̃ ≤ 1T ,

is termed a defective transition matrix.

The chance of a first rain precisely five days after sunshine is given by

eT3 p5 = eT3 P̃
5e1,

that is, the (3, 1) element of P̃ 5. Other statistics are, for instance: on average, how many
days after sunshine is the first rain? This statistic is determined as follows:

∞∑
n=1

n× (chance of first rain on day n) =
∞∑
n=1

neT3 P̃
ne1.

For computing such statistics, the following identities, which can be shown to hold if all
eigenvalues of a matrix A satisfy |λ| < 1, are useful:

∞∑
n=1

An = A(I − A)−1,

∞∑
n=1

nAn = A(I − A)−2.

1In terms of paths on graphs the transition matrix entry Pij gives the likelihood when standing at node
j of following the path to node i.
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Figure 6.4:

To use the identities, we need to establish that the eigenvalues of the defective transition
matrix P̃ are strictly less than unity in modulus, the proof of which uses arguments similar
to those of the proof of Theorem 6.2.1.



Chapter 7

Resonance

We consider a spring-mass-damper system with spring constant κ > 0, damping (friction)
constant c ≥ 0 and mass m > 0. Let x(t) denote the elongation of the spring from its rest
state. Hooke’s law states that the force exerted by the spring on the mass is proportional
to the elongation and opposite in sign:

force = −κx(t).

Newton’s Second Law states that the rate of change of momentum is equal to the sum of
the applied forces. For a constant mass, this is

mẍ =
∑

(forces)

A damper is a device that applies a force proportional to velocity and opposite in sign.
The motion of the spring mass damper system is

mẍ = −cẋ− κx, x(0) = x0, ẋ(0) = y0. (7.1)

We want to investigate the case in which an external force is applied to the system. For
ease of notation later, we introduce new variables

ρ =
c

2m
, ν2 =

κ

m
,

and rewrite (7.1) with applied forcing f(t) in the form

ẍ+ 2ρẋ+ ν2x = f(t). (7.2)

Given a linear differential equation with external forcing, such as (7.1), we associate the
homogeneous problem defined by f(t) ≡ 0, whose solution xh(t) satisfies

ẍh + 2ρẋh + ν2xh = 0.
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Suppose xp(t) is a particular solution to (7.2), and let x(t) = xp(t) + xh(t). Then x(t) is
also a solution to (7.2) as follows from substitution

(ẍp + ẍh) + 2ρ(ẋp + ẋh) + ν2(xp + xh) = f(t),

(ẍh + 2ρẋh + ν2xh) + ẍh + 2ρẋp + ν2xp = f(t),

since the term in parentheses in the last line is zero, and the remaining terms are pre-
cisely the differential equation for the particular solution. Given a particular solution, the
homogeneous solution is chosen to ensure the initial conditions are satisfied.

Hence, the solution to the inhomogeneous problem is a sum of a particular solution and a
homogeneous solution. We consider each of these separately.

7.1 The homogeneous solution

As we did with the second order differential equation (2.12) we introduce the velocity
yh(t) = ẋh(t) and write the homogeneous problem as a first order system(

ẋh
ẏh

)
=

[
0 1
−ν2 −2ρ

](
xh
yh

)
.

This is a problem in the form (5.3) with matrix A given in square brackets above. Let λ1

and λ2 and be the eigenvalues corresponding to the eigenvectors v1 and v2 of A. Then,
assuming λ1 6= λ2, the solution can be written(

xh(t)
yh(t)

)
= eλ1tv1 + eλ2tv2.

In particular, the solution for xh(t) is

xh(t) = C1e
λ1t + C2e

λ2t,

for some constants C1 and C2, where λ1 and λ2 satisfy

0 = det

[
−λ 1
−ν2 −2ρ− λ

]
= λ2 + 2ρλ+ ν2 = p(λ),

where p(λ) is the characteristic polynomial.

Remark. As an aside, note that we can define a differential operator by applying p to the
derivative d

dt
as follows:

p

[
d

dt

]
xh(t) =

[(
d

dt

)2

+ 2ρ
d

dt
+ ν2

]
xh(t) =

d2xh
dt2

+ 2ρ
dxh
dt

+ ν2xh = 0.
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The same holds for higher order linear differential equations, and allows us to immedi-
ately construct the characteristic polynomial without going to the trouble of introducing
auxiliary variables and matrix formulations:

dkx

dtk
+ ak−1

dk−1x

dtk−1
+ · · ·+ a1

dx

dt
+ a0 = 0

⇒ p(λ) = λk + ak−1λ
k−1 + · · ·+ a1λ+ a0 = 0

⇒ x(t) = C1e
λ1t + C2e

λ2t + · · ·+ Cke
λkt,

assuming the eigenvalues are distinct.

For the homogeneous problem the roots of the characteristic polynomial are

p(λ) = 0 ⇒ λ1,2 = −ρ±
√
ρ2 − ν2.

We consider now what happens as we increase the damping parameter ρ from zero.

For ρ = 0, the eigenvalues are purely imaginary

λ1,2 = ±iν,

and the homogeneous solution is

xh(t) = C1e
iνt + C2e

−iνt = A cos νt+B sin νt

where the constant pairs C1 and C2 or A and B may be determined from the initial
conditions. It is useful to note the following identity: Let γ ∈ C alternatively be written
γ = γ1 + iγ2 = |γ| e−iδ in real/imaginary and polar coordinates respectively. Then the
following are equivalent

Re (γeiνt) = γ1 cos νt− γ2 sin νt = |γ| cos(νt− δ).

In particular, an alternative representation of the homogeneous solution is

xh(t) = C cos(νt− δ),

where constants C and δ can again be determined from the initial conditions. We call ν
the frequency, δ the phase, and C the amplitude. This representation emphasizes the fact
that xh(t) is a shifted and scaled cosine wave.

As the damping parameter ρ is increased from zero we have, initially, ρ < ν. In this case,
the eigenvalues are complex conjugates λ1 = λ̄2:

λ1,2 = −ρ± i
√
ν2 − ρ2.

In this case, the homogeneous solution is

xh(t) = e−ρt(C1e
i
√
ν2−ρ2t + C2e

−i
√
ν2−ρ2t) = C cos(

√
ν2 − ρ2t− δ)
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for some constants C and δ to be determined from the initial conditions. The solution is
oscillatory with decaying amplitude C exp(−ρt).

Note however that |λ1| = |λ2| = ν, i.e. the motion of the eigenvalues (as we increase ρ) is
constrained to a circle. As we continue to increase ρ, the eigenvalues move symmetrically
along the circle until they ‘collide’ for ρ = ν at λ1 = λ2 = −ν. If we increase ρ beyond this
point, we have ρ > ν, and two real eigenvalues emerge:

λ1,2 = −ρ±
√
ρ2 − ν2.

The solution is
xh(t) = C1e

λ1t + C2e
λ2t

Both eigenvalues are negative, hence the solution decays to xh → 0. The eigenvalues are
centered at −ρ, and the greatest of these, λ1 = −ρ+

√
ρ2 − ν2, dominates the convergence

eventually:

xh(t) ≈ C1e
(−ρ+
√
ρ2−ν2)t, as t→∞.

Since it also holds for this eigenvalue that λ1 > −ν, we see that the most rapid damping
rate occurs at the collision point ρ = ν.

These considerations lead us to define the cases:

• Undamped: ρ = 0,

• Underdamped (oscillatory): 0 < ρ < ν,

• Critically damped: ρ = ν,

• Overdamped: ρ > ν.

7.2 The particular solution

We now return to the inhomogeneous problem (7.2). We will be interested in a case with
some amount of damping, ρ > 0. From the results of the previous section, we see that
the homogeneous solution is eventually damped out xh(t)→ 0. This implies (i) eventually
only the particular solution survives x(t) ≈ xp(t) as t→∞, and (ii) since xh satisfies the
initial conditions, these eventually become irrelevant.

Let us make a concrete choice of the forcing function, f(t) = cosµt, with forcing frequency
µ. It is somewhat more convenient to extend the differential equation (7.2) to complex
valued x(t) and f(t) = exp(iµt). If we do this, then the real part of the solution Rex(t)
gives the correct motion (check this!).

Since the particular solution xp(t) eventually dominates, we attempt a solution of the
form

xp(t) = Re
(
Heiµt

)
,
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where the constant H is a complex number, which may depend on µ. Substituting into
(7.2) yields

(−µ2)Heiµt + 2ρ(iµ)Heiµt + ν2Heiµt = eiµt.

Solving for H leaves

H =
1

p(iµ)
,

where p is the characteristic polynomial. In signal theory, an external driving term eiµt is
referred to as the input signal, and the particular solution xp(t) is referred to as the output
signal or response of the system. The function H is in general complex, and can be written
as H = |H| exp(−iδ). Then, the particular solution may be written

xp(t) = Re
[
Heiµt

]
= |H| cos(µt− δ)

Consequently, the response of the system to an input signal f(t) = cosµt is a signal xp(t)
with phase shift δ and amplitude scaling or gain

|H| = 1

|p(iµ)|
=

1√
(ν2 − µ2)2 + 4ρ2µ2

.

The characteristic polynomial is present in the denominator of the gain |H|. Since the
characteristic polynomial takes value 0 at the eigenvalues λ1,2 of the homogeneous part,
the gain may be very large if iµ ≈ λ1,2. In this case we speak of resonance. Since iµ is
purely imaginary, resonance may only occur if λ1,2 are near the imaginary axis. We saw
in the previous section that this is the case when the damping is small ρ � ν. Therefore
resonance may be observed when ρ� ν and µ ≈ ν.

We plot the response function for the case ρ = 0.1 and ν = 1 in Figure 7.1. We see that
the gain is a factor 5 for µ = 1.

From Fourier theory, it is known that a large class of functions may be approximated as a
sum of sinusoidal functions

f(t) ≈
J∑
j=1

αj cos(µjt)

If the input signal is such a composite function, then resonance may occur if any of the
frequencies µj ≈ ν, ρ� ν.

7.3 Modelling spring-mass-damper systems

Springs-mass-damper systems are used to model all kinds of linear interactions in mechan-
ical systems. Classical mechanics is founded on the laws of Newton. Newton’s second law
states that the change in momentum (mass times velocity) of an object is equal to the
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Figure 7.1: Response function for spring-mass-damper system.

net force applied to it. If a spring is inserted between two masses, and these are pressed
together or pulled apart, the spring exerts an equal and opposite force on each mass that
opposes this motion. A damper opposes all motion with a force that is proportional to the
velocity.

Suppose we have a system of two masses (m1 and m2) connected by three springs (spring
constants k1, k2, and k3) connecting them to each other and to the walls on either side
(see Figure 7.2), and the friction encountered by the masses as they slide over the floor is
modelled as damping (damping constants c1 and c2).

Figure 7.2: Spring-mass-damper system with moving right wall.

Let the displacement of the masses be denoted x1 and x2 with positive orientation right-
ward, and suppose the wall on the right side can move be moved with a given (external)
motion x3(t).
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Then the motion of the masses is given by

m1ẍ1 = −c1ẋ1 + forces,

m2ẍ2 = −c2ẋ2 + forces,

where the forces due to the springs are yet to be determined.

Consider first the force exerted on mass m1 by spring k1. As the mass moves rightward,
the spring elongates from rest by an amount x1. The spring pulls back with a force k1x1 in
the negative (leftward) direction. The force on the mass from this spring is −k1x1.

What is the force of spring k2? Suppose x1 = x2, that is, the masses are displaced by the
same amount. Then the middle spring is not elongated and exerts no force. On the other
hand, if the mass on the left is displaced to the right (x1 > 0), and the mass on the right is
displaced to the left (x2 < 0), then the middle spring is compressed by an amount x1−x2.
It exerts a force of magnitude k2(x1 − x2) on each mass, but in opposite directions, again
opposing this motions of each. This means the force on the left mass is −k2(x1 − x2) and
the force on the right mass is k2(x1 − x2) = −k2(x2 − x1).

Applying the same reasoning to the third spring, we arrive at the equations of motion

m1ẍ1 = −c1ẋ1 − k1x1 − k2(x1 − x2),

m2ẍ2 = −c2ẋ2 − k2(x2 − x1)− k3(x2 − x3).

Notice that in the equation of motion of each mass, the force of exerted by each spring is
always opposite to the displacement of that mass. (In other words, in the equation for x1,
we see −k1x1 − k2x1 on the right side, and in the equation for x2 we see −k2x2 − k3x2 on
the right side.)

Let us rewrite this system as a first order system in matrix notation. Introduce the veloc-
ities y1 = ẋ1, y2 = ẋ2. Then we can check that

ẋ1

ẋ2

ẏ1

ẏ2

 =


0 0 1 0
0 0 0 1
K11 K12 − c1

m1
0

K21 K22 0 − c2
m2



x1

x2

y1

y2

+


0
0
0
1

 f(t),

where we have set f(t) = k3x3(t) to be a generic forcing function, and assigned con-
stants

K11 = −k1 + k2

m1

, K12 =
k2

m1

, K21 =
k2

m2

, K22 = −k2 + k3

m2

.

Further denoting the matrix in square brackets by A, and letting z = (x1, x2, y1, y2)T ,
b = (0, 0, 0, 1)T , the system becomes

ż = Az + bf(t). (7.3)
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We can perform a similar resonance analysis for this coupled system as for the system in
the previous section. Choose the input signal f(t) = eiµt, keeping in mind that we then are
interested in the real part of z(t). We can again see that the solution is only determined
up to a homogeneous solution zh(t) that solves

żh = Azh

and satisfies the boundary conditions. The eigenvalues λj, j = 1, . . . , 4, of A are the roots
of the (quartic) characteristic polynomial defined by the condition

det(λI − A) = 0.

Assuming these satisfy Reλj < 0, for all j (which they do if c1,2 > 0), the homogeneous
solution eventually damps out: limt→∞ zh(t) = 0.

To determine the particular solution zp(t), we try

zp(t) = Heiµt,

where H is a constant vector that depends on the input frequency µ. Inserting this solution
in (7.3) gives

iµHeiµt = AHeiµt + beiµt.

Solving for H gives
H = (iµI − A)−1b.

If we are interested in the response of a particular variable, say x2, to this forcing, note
that we can extract this from z using x2(t) = eT2 z(t), where e2 = (0, 1, 0, 0)T is a canonical
unit vector. Then the response function for x2 is

eT2H = eT2 (iµI − A)−1b.

Again, if the damping is small, then the eigenvalues of A are near the imaginary axis.
Then if iµ comes close to an eigenvalue, the matrix (iµI −A) ≈ (λI −A) becomes nearly
singular, and its inverse is large. This can lead to large values of H and resonance.

As an example, we take m1 = 1, m2 = 2, k1 = k3 = 1, k2 = 1.5, c1 = c2 = 0.1. In this
case, the eigenvalues of A are λ1,2 = −0.0312± 0.8019 and λ3,4 = −0.0438± 1.7617. The
response functions for all four components of z are shown in Figure 7.3. Resonances occur
near the eigenvalues (natural frequencies).
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Figure 7.3: Response functions for coupled system.



Chapter 8

Higher order numerical methods

8.1 The Group of Flow Maps

Let us next consider the general autonomous initial value problem

dy

dt
= f(y), y ∈ D, f : D → D, t ∈ [0, T ], y(0) = y0. (8.1)

Given a fixed time ∆t, we can consider any point of phase space, y0, as a starting point of
a trajectory (y(t) = y(t; y0)) which is continued up to time τ , assuming the solution exists
on the entire interval. We think of the action of solving the differential equation as defining
a map from starting points of trajectories to their endpoints. Associated to a differential
equation (8.1) we define the flow map

Φτ (y0) = y(τ)

where y(t) is the solution of the initial value problem

dy

dt
= f(y), y(0) = y0, t ∈ [0, τ ].

When the system is nonlinear there is usually not a simple formula for the flow map.
Nonetheless the concept is valuable.

Consider solving the ODE (8.1) with initial condition y(0) = y0 for a time t1. Denote
solution at t1 by y1. Next, solve initial value problem (8.1) with initial condition y(0) = y1

on the interval [0, t2]. Denote the solution at time t2 by y2. It is clear that y2 is also the
same solution you would obtain if you would solve (8.1) with initial condition y(0) = y0

over the interval [0, t1 + t2]. In terms of the flow map,

Φt2 ◦ Φt1 = Φt1+t2 = Φt1 ◦ Φt2 , t1, t2 > 0.

78



8.1. THE GROUP OF FLOW MAPS 79

Thus the composition of the two maps is another map of the same family. If we can solve
the differential equations for all positive or negative time, then we can write

Φt ◦ Φ−t = Φt+−t = Φ0,

but Φ0 is evaluated by solving the differential equations over a zero length interval, so is
just the identity map. Hence we see that Φ−t = Φ−1

t . The set of all such maps {Φt | t ∈ R}
is what is termed a one-parameter group with the (commutative) group operation being
composition of maps.

The flow map can also be applied to an open set B ⊂ Rd, and then we view the flow map
as a function taking sets on phase space to other sets on phase space, t time units later.
In other words, each element of B is taken as the initial condition of (8.1), and is mapped
to the solution at the end of the interval of time t.

Φ∆t(B) = {z ∈ Rd : z = Φ∆t(y); y ∈ B}

Implicit in this usage is the assumption that the trajectories through every point of B exist
for at least t units of time.

For example, in Figure 8.1 a rectangular set of initial conditions in R2 is mapped under
the flow map Φ∆t of a differential equation of the form

dx

dt
= y,

dy

dt
=

a

x7
− b

x13
, (8.2)

for ∆t = 0, 0.35, 0.9. The solutions are periodic.

Figure 8.1: Evolution of a rectangular set B under the flow map of (8.2) at times t = 0,
t = 0.35 and t = 0.9.
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8.2 Numerical Flow Maps

When we discretize an ODE, we normally replace it by a recursion which describes in an
approximate sense how the solution evolves from timestep to timestep, as with Euler’s
method

yn+1 = yn + ∆tf(yn).

We could also think of regularly sampling the exact solution on a succession of time intervals
of length ∆t, according to the rule

y(tn+1) = Φ∆t(y(tn))

If y(t; y0) represents the solution of the differential equation (8.1) with initial condition
y(0) = y0 after t units of time, we can write

y(∆t; y0) = Φ∆t(y0).

Moreover,
y(2∆t; y0) = Φ∆t ◦ Φ∆t(y0),

and so on. This means that we can view the iteration of Φ∆t as producing snapshots of
the solution at equally spaced points in time. Similarly, Euler’s method can be seen as
iteration of a map

Ψ∆t(y) = y + ∆tf(y)

which approximates the flow map Φ∆t. We refer to Ψ∆t as the numerical flow map for
Euler’s method.

Do the mappings Ψ∆t form a one-parameter group? The answer is no. Quite simply,

Ψ∆t1 ◦Ψ∆t2 6= Ψ∆t1+∆t2 .

Indeed, even
Ψ∆t ◦Ψ∆t 6= Ψ2∆t.

This is a fundamental difference between the exact flow map and its numerical approxi-
mation.

There are a wide variety of numerical methods available for solving the ODE (2.11) or
(8.1). In some cases these are based on using the values of solutions computed at two or
more successive points in time (so-called multistep methods). For now we restrict ourselves
to generalized one-step methods which can always be associated to the recurrence relation

yn+1 = Ψ∆t(yn). (8.3)

The discrete approximation would satisfy

y1 = Ψ∆t(y0), y2 = Ψ∆t(y1) = Ψ∆t ◦Ψ∆t(y0),
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and so on. It is useful to have a notation for applying a map n times, recursively. We will
use a superscript to indicate this:

Ψ2
∆t = Ψ∆t ◦Ψ∆t, Ψ3

∆t = Ψ∆t ◦Ψ∆t ◦Ψ∆t,

etc.

For explicit methods such as Euler’s method, the numerical flow map is obvious. For
implicit methods such as the Trapezoidal rule (2.21), it is unclear in advance whether such
a map is well-defined. It follows from the implicit function theorem that for ∆t small
enough and appropriate f , there exists a solution to the trapezoidal rule, but it may not
be unique. Typically, there is a branch of solutions that converge to yn as ∆t → 0. If we
take this branch, then the flow map (8.3) is well-defined.

8.3 Convergence of generalized one-step methods

In this section we consider convergence of the numerical flow map Ψ∆t to the exact flow map
Φ∆t in the approximation limit ∆t → 0, thus establishing conditions for the convergence
of a large class of one-step methods.

Define the local error of a numerical method as the difference between the flow-map and
its discrete approximation:

le(y,∆t) = Ψ∆t(y)− Φ∆t(y).

The local error measures just how much error is introduced in a single timestep of size ∆t.
Let us assume that, on our (invariant) domain of interest D, we can expand le in powers
of ∆t (typically using Taylor series), and that it satisfies

‖le(y,∆t)‖ ≤ C∆tp+1, (8.4)

where C is a constant that depends on y(t) and its derivatives, and p ≥ 1. A method that
meets this criterion is said to be consistent.

We will further suppose that our numerical method satisfies a ∆t-dependent Lipschitz
condition on D

‖Ψ∆t(u)−Ψ∆t(v)‖ ≤ (1 + ∆tL̂)‖u− v‖, ∀u, v ∈ D. (8.5)

The constant L̂ is not necessarily the same as the Lipschitz constant for the vector
field.

The error can be viewed as the difference between n iterations of Ψ∆t and n iterations of
Φ∆t, thus we define it to be

en = yn − y(tn),
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so
en+1 = yn+1 − y(tn+1) = Ψ∆t(yn)− Φ∆t(y(tn)).

To this expression we add and subtract Ψ∆t(y(tn)), which is the numerical solution started
from a point on the solution trajectory, then take norms to obtain

‖en+1‖ = ‖Ψ∆t(yn)−Ψ∆t(y(tn)) + Ψ∆t(y(tn))− Φ∆t(y(tn))‖
≤ ‖Ψ∆t(yn)−Ψ∆t(y(tn))‖+ ‖Ψ∆t(y(tn))− Φ∆t(y(tn))‖.

Now we use our two assumptions (8.4) and (8.5) to write

‖en+1‖ ≤ (1 + ∆tL̂)‖yn − y(tn)‖+ C∆tp+1

= (1 + ∆tL̂)‖en‖+ C∆tp+1.

Applying Lemma 2.4.1 then yields

‖en‖ ≤
C∆tp+1

κ− 1
(κn − 1) + κn‖e0‖

where κ = 1 + ∆tL̂. Finally, since 1 + ∆tL̂ ≤ e∆tL̂ and therefore κn ≤ eT L̂, if we assume
the initial condition is exact e0 = 0, we get the uniform bound

‖en‖ ≤ ∆tp
C

L̂
(eT L̂ − 1), (8.6)

which proves convergence at order p. We summarize this result in an important convergence
theorem:

Theorem 8.3.1 (Convergence of One-Step Methods) Given a differential equation
(8.1) and a generalized one-step method Ψ∆t which satisfies conditions (8.4) and (8.5), the
global error satisfies

max
n=0,...,N

‖en‖ = O(∆tp).

This theorem is powerful. Without specifying anything about the construction of the
method, it guarantees the convergence of any one-step method that is consistent and
satisfies an ∆t-dependent Lipschitz condition.

As an example, let us again prove convergence of Euler’s method (2.16) for smooth vector
fields f , making use of Theorem 8.3.1. Consider a compact domain D ⊂ Rd and suppose
f is smooth on D and has Lipschitz constant L on D (since f is smooth, we can take
L = maxD ‖∂f∂y‖). Then, since

‖Ψ∆t(y)−Ψ∆t(z)‖ = ‖y+∆tf(y)−(z + ∆tf(z)) ‖ ≤ ‖y−z‖+∆tL‖y−z‖ = (1+∆tL)‖y−z‖,

The numerical flow map is Lipschitz with L̂ = L.
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The exact solution satisfies

Φ∆t(y) = y + ∆t
dy

dt
+

∆t2

2

d2y

dt2
+O(∆t3) = y + ∆tf(y) +

∆t2

2

d2y

dt2
+O(∆t3)

Therefore the local error is

le(y,∆t) = y + ∆tf(y)−
[
y + ∆tf(y) +

∆t2

2

d2y

dt2
+O(∆t3)

]
= O(∆t2),

and we can apply Theorem 8.3.1 with C = maxD ‖d
2y
dt2
‖ to show that Euler’s method is

convergent with order p = 1.

In the proof of the Theorem 8.3.1, the relation (8.6) indicates that the magnitude of the
global error bound will be reduced in proportion to ∆tp. For example, when using Euler’s
method in practice, we typically observe that halving the stepsize reduces the error by
a factor of two. We say for this reason that Euler’s method is 1st order accurate. The
error incurred in each time step is O(∆tp+1), and in fact this bound holds for any fixed
number of time steps. The loss of one order of ∆t occurs because the number of time steps
needed to cover a fixed interval of length T increases as ∆t→ 0 at a rate proportional to
1/∆t.

Note the proof suggests that—although in the limit ∆t → 0, T fixed, the error can be
made as small as possible—in the limit T →∞, ∆t fixed, the global error may grow at an
exponential rate.

8.4 Local accuracy of higher-order methods

We will now investigate the accuracy of the methods introduced above in terms of their
approximation of the numerical solution over one timestep.

To do so, we need to work with higher order derivatives of the function f(y) : Rd → Rd.
We will denote by f ′ the Jacobian matrix Df , which can be seen as an linear operator
f ′ : Rd → Rd.

The second derivative

f ′′ = (
∂2f (i)

∂y(j)∂y(k)
)

is a bilinear operator. We denote its contraction with two vectors a ∈ Rd and b ∈ Rd

by

f ′′(a, b) =
∑
j,k

∂2f (i)

∂y(j)∂y(k)
a(j)b(k).

This contraction is symmetric by the equivalence of mixed partial derivatives, so the order
of the arguments a and b is irrelevant. The third derivative is similarly trilinear and
symmetric in all three arguments, denoted f ′′′(·, ·, ·).
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In general, we cannot have an exact expression for le(y; ∆t), but we can approximate this
by computing its Taylor series in powers of ∆t. For the continuous dynamics (i.e. the
exact solution of (8.1)) we have the Taylor series expansion

y(t+ ∆t) = y(t) + ∆ty′(t) +
1

2
∆t2y′′(t) +

1

6
∆t3y′′′(t) +O(∆t4).

The derivatives can be related directly to the solution itself by using the differential equa-
tion

y′(t) = f(y(t))

y′′(t) = f ′(y(t))y′(t)

y′′′(t) = f ′′(y(t))(y′(t), y′(t)) + f ′(y(t))y′′(t)
...

Then we can recursively use the differential equation again to obtain

y′ = f,

y′′ = f ′f,

y′′′ = f ′′(f, f) + f ′f ′f,
...

where we have dropped the arguments of the various expressions. In all cases, y and its
derivatives are assumed to be evaluated at t and f and its derivatives at y.

Alternatively, we can write

Φ∆t(y) = y + ∆tf +
∆t2

2
f ′f +

∆t3

6
[f ′′(f, f) + f ′f ′f ] +O(∆t4) (8.7)

The same procedure can be carried out for the Runge-Kutta method itself. For example,
for Euler’s method, we have

Ψ∆t(y) = y + ∆tf(y)

(that is it!). This means that the discrete and continuous series match to O(∆t2) and the
local error expansion can be written

le(y,∆t) =
∆t2

2
f ′f +O(∆t3).

again, we have dropped the argument y of f for notational compactness.

For the trapezoidal rule (2.21), and other implicit schemes, the derivatives need to be
computed by implicit differentiation. For simplicity, with y fixed, write z = z(∆t) =
Ψ∆t(y). Then z(∆t) must satisfy the implicit relation

z = y +
∆t

2
(f(y) + f(z))
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Observe that z(0) = y. Next we differentiate the expression for z,

z′ =
dz

d∆t
=

1

2
(f(y) + f(z)) +

∆t

2
f ′(z)z′, (8.8)

(Note that z does not satisfy the differential equation, so we cannot replace z′ here by
f(z)!) For ∆t = 0, the last term of (8.8) vanishes and we have

z′(0) = f(y).

Differentiate (8.8) once more with respect to ∆t to obtain

z′′ =
1

2
f ′(z)z′ +

1

2
f ′(z)z′ +

∆t

2
(f ′′(z)(z′, z′) + f ′(z)z′′), (8.9)

for ∆t = 0, the last term of (8.9) drops out and we have

z′′(0) = f ′(z(0))z′(0) = f ′(y)f(y).

Using these expressions, we may write the first few terms of the Taylor series in ∆t of
Ψ∆t(y):

Ψ∆t(y) = z(∆t) = z(0) + ∆tz′(0) +
∆t2

2
z′′(0) + . . . = y + ∆tf +

∆t2

2
f ′f + . . . (8.10)

Comparing this with the expansion for the exact solution (8.7) we see that the first few
terms are identical. Thus the local error vanishes to at least O(∆t3). To get the next term
in the local error expansion, we differentiate (8.9):

z′′′ = f ′′(z)(z′, z′) + f ′(z)z′′ + (1/2) (f ′′(z)(z′, z′) + f ′(z)z′′) +

∆t

2
(f ′′′(z)(z′, z′, z′) + 2f ′′(z)(z′, z′′) + f ′′(z)(z′, z′′) + f ′(z)z′′′) ,

which evaluates to
z′′′(0) = (3/2) (f ′′(f, f) + f ′f ′f) ,

which means that the expansions (8.10) and (8.7) do not match in the term of 3rd order:
for trapezoidal rule, we have

le(y,∆t) = − 1

12
(f ′′(f, f) + f ′f ′f) ∆t3 +O(∆t4).



Chapter 9

Multistep methods

In this section we introduce one of the two main classes of numerical integrators for dy-
namical systems: the linear multistep methods. The section contains an overview of the
analytical issues relevant to these methods. The other great class of numerical integra-
tors are Runge-Kutta methods. These generalize the one-step methods, of which we have
already seen some examples.

Assuming the solution has been computed for some number of time steps, the main idea
of multistep methods is to use the previous k step values to approximate the solution at
the next step. A linear k-step method is defined as

k∑
j=0

αjyn+j = ∆t
k∑
j=0

βjf(yn+j). (9.1)

For a linear k-step method, we require that αk 6= 0 and either α0 6= 0 or β0 6= 0. Further-
more, the coefficients in (9.1) are not uniquely defined, since multiplication of both sides
by a constant defines the same method. Usually the coefficients are normalized such that
either αk = 1, or

∑
j βj = 1.

When using (9.1) in a computer code, at time step n+ k− 1 it is assumed that the values
yn+j, j = 0, . . . , k−1 are already computed, so yn+k is the only unknown in the formula. If
βk is nonzero the method is implicit, otherwise it is explicit. Since the initial value problem
(8.1) only specifies y0 = y(t0), it is necessary to first generate data yj, j = 1, . . . , k − 1
before the formula (9.1) can be applied. This is done, for example, by using forward Euler
or another one-step method in the first k − 1 steps.

9.1 Some multistep methods

Some examples of linear multistep methods are:

86
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• The θ-method generalizes all linear one-step methods

yn+1 − yn = ∆t(1− θ)f(yn) + ∆tθf(yn+1). (9.2)

Here we have α0 = −1, α1 = 1, β0 = 1 − θ and β1 = θ. Important methods are
forward Euler (θ = 0), backward Euler (θ = 1) and trapezoidal rule (θ = 1/2). For
any θ > 0, this method is implicit.

• Leapfrog is an explicit two-step method (k = 2) given by α0 = −1, α1 = 0, α2 = 1
and β1 = 2:

yn+2 − yn = 2∆tf(yn+1) (9.3)

• The class of Adams methods have αk = 1, αk−1 = −1 and αj = 0 for j < k − 1.
Adams-Bashforth methods are explicit, additionally satisfying βk = 0. Examples of
1, 2 and 3-step methods are (using notation fn ≡ f(yn)):

yn+1 − yn = ∆tfn (9.4)

yn+2 − yn+1 = ∆t

(
3

2
fn+1 −

1

2
fn

)
(9.5)

yn+3 − yn+2 = ∆t

(
23

12
fn+2 −

4

3
fn+1 +

5

12
fn

)
(9.6)

Adams-Moulton methods are implicit, with βk 6= 0.

• The Backward differentiation formulae (BDF) are a class of linear multistep methods
satisfying βj = 0, j < k and generalizing backward Euler. The two-step method
(BDF-2) is

yn+2 −
4

3
yn+1 +

1

3
yn = ∆t

2

3
f(yn+2). (9.7)

9.2 Order of accuracy and convergence

Associated with the linear multistep method (9.1) are the polynomials

ρ(ζ) =
k∑
j=0

αjζ
j, σ(ζ) =

k∑
j=0

βjζ
j. (9.8)

These are important for understanding the dynamics of multistep methods, and will be
used later.

The residual of a linear multistep method at time tn+k may be defined in a number of ways.
We obtain it by substituting the exact solution y(t) of (8.1) at times y(tn+j), j = 0, . . . , k
into (9.1), i.e.

rn :=
k∑
j=0

αjy(tn+j)−∆t
k∑
j=0

βjy
′(tn+j). (9.9)
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(This is actually the residual accumulated in the (n + k − 1)th step, but for notational
convenience we will denote it rn.) A linear multistep method has maximal order of accuracy
p if rn = O(∆tp+1) for all sufficiently smooth f .

Write the Taylor series expansions of y(tn+j) and y′(tn+j) as

y(tn+j) =
∞∑
i=0

(j∆t)i

i!
y(i)(tn), y′(tn+j) =

∞∑
i=0

(j∆t)i

i!
y(i+1)(tn),

where in this section y(i)(t) means the ith derivative of y(t). Substituting these into (9.9)
and manipulating,

rn =
k∑
j=0

αj

∞∑
i=0

(j∆t)i

i!
y(i)(tn)−∆t

k∑
j=0

βj

∞∑
i=0

(j∆t)i

i!
y(i+1)(tn)

=
k∑
j=0

αjy(tn) +
∞∑
i=1

k∑
j=0

αj
(j∆t)i

i!
y(i)(tn)−

∞∑
i=1

k∑
j=0

βj
(j∆t)i

j(i− 1)!
y(i)(tn)

=
k∑
j=0

αjy(tn) +
∞∑
i=1

1

i!
∆tiy(i)(tn)

[
k∑
j=0

αjj
i − i

k∑
j=0

βjj
i−1

]
.

Equivalent conditions for a linear multistep method to have order of accuracy p are:

• The coefficients αj and βj satisfy (where 00 = 1)

k∑
j=0

αj = 0 and
k∑
j=0

αjj
i = i

k∑
j=0

βjj
i−1 for i = 1, . . . , p. (9.10)

• The polynomials ρ(ζ) and σ(ζ) satisfy

ρ(ez)− zσ(ez) = O(zp+1). (9.11)

• The polynomials ρ(ζ) and σ(ζ) satisfy

ρ(z)

log z
− σ(z) = O((z − 1)p). (9.12)

The first of these follows from the considerations above. For proofs of the second and third
forms, see Hairer, Nørsett and Wanner (1993).

Examples. The method (9.3) has order 2. The methods (9.5) and (9.6) have orders 2 and
3, respectively. The method (9.7) has order 2.
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9.3 The root condition, a counter-example

Earlier we saw that for Euler’s method, convergence follows from the fact that the residual
is O(∆t2), leading to a global error of O(∆t) on a fixed interval. For linear multistep
methods, first order accuracy alone is insufficient to ensure convergence. We will not prove
convergence for this class of methods, but will simply state the convergence theorem and
show where it can go wrong.

The method (9.1) is said to satisfy the root condition, if all roots ζ of

ρ(ζ) = 0,

lie on the unit disc (|ζ| ≤ 1), and any root of modulus one (|ζ| = 1) has multiplicity one.
Note that ρ(ζ) is the characteristic polynomial of the recursion defined by the left side
of (9.1) and corresponds to the multistep method applied to y′ = 0. The root condition
is necessary to ensure that the origin is stable when integrating the trivial differential
equation.

Furthermore, a linear multistep method is incomplete without a starting procedure to
generate the first k − 1 iterates y1, . . . , yk−1.

Theorem 9.3.1 Suppose a linear multistep method (9.1) is equipped with a starting pro-
cedure satisfying lim∆t→0 yj = y(t0 + j∆t) for j = 1, . . . , k− 1. Then the method converges
to the exact solution of (8.1) on a fixed interval as ∆t → 0 if and only if it has order of
accuracy p ≥ 1 and satisfies the root condition.

The proof of this theorem will not be handled in these notes. See, e.g., the monograph of
Hairer, Nørsett, & Wanner (1993).

To illustrate the necessity of the root condition, consider the method

yn+3 + yn+2 − yn+1 − yn = ∆t

(
8

3
f(yn+2) +

2

3
f(yn+1) +

2

3
f(yn)

)
. (9.13)

Substituting ρ(ζ) = ζ3 + ζ2 − ζ − 1 and σ(ζ) = 8
3
ζ2 + 2

3
ζ + 2

3
into (9.11) gives

ρ(ez)− zσ(ez) =
1

3
z4 +O(z5),

so the method is third order accurate. Now applying the method to the easiest of all initial
value problems

y′ = 0, y(0) = 1, t ≥ 0

yields the linear difference equation

yn+3 + yn+2 − yn+1 − yn = 0. (9.14)
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If the roots ζ1, ζ2 and ζ3 of the characteristic polynomial ρ(ζ) = 0 were distinct, the exact
solution of such a recursion would be

yn = c1ζ
n
1 + c2ζ

n
2 + c3ζ

n
3 .

If any root ζi had modulus greater than 1, then the recursion would satisfy |yn| → ∞ unless
the corresponding constant ci were identically 0. For the current case, ρ(ζ) = (ζ−1)(ζ+1)2,
and there is a double root at −1. For a double root ζ3 ≡ ζ2, the solution of the recursion
(9.14) becomes

yn = c1ζ
n
1 + c2ζ

n
2 + c3nζ

n
2 .

One still has |yn| → ∞ (but with linear growth), unless c3 = 0.

The constants c1, c2 and c3 are determined by the initial conditions necessary to start the
multistep method. Suppose we take y0 = y1 = y2 = 1, consistent with the exact solution.
Then this yields

c1 = 1, c2 = c3 = 0,

and the solution is yn = 1, for all n. The method is exact.

Suppose, however, that the initial conditions are perturbed slightly. We take y0 = 1 + ε,
y1 = y2 = 1. Then we find

c1 = 1 +
3

4
ε, c2 =

1

4
ε, c3 = −1

2
ε,

and the solution is unbounded. The numerical solution sequence is unstable to pertur-
bations in the initial conditions. As a consequence, any errors incurred will destabilize
the solution. The method works only for the trivial differential equation, y′ = 0, and
then only if the starting procedure is exact. It fails to converge for all other differential
equations.

As an example we compute the solution of y′ = −y, y(0) = 1, t ∈ [0, 1.5] using (9.13) for
∆t = 1/10, 1/100 and 1/1000. The instability gets worse as ∆t decreases.

Theorem 9.3.2 The maximum order of a k-step method satisfying the root condition is
p = k for explicit methods and, for implicit methods, p = k + 1 for odd k and p = k + 2
for even k.

9.4 Stability

An important criterion for distinguishing between different methods is their ability to
preserve the stability of a stable equilibrium. To test this, we check under what conditions
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Figure 9.1: Solution of y′ = −y, y(0) = 1 with (9.13) for various ∆t.

the numerical solution converges to zero when we apply (9.1) to the scalar complex linear
test problem y′ = λy, λ ∈ C:

k∑
j=0

αjyn+j = ∆tλ
k∑
j=0

βjyn+j.

Letting z = ∆tλ we write
k∑
j=0

(αj − zβj)yn+j = 0.

For any z this is a linear difference equation with characteristic polynomial

k∑
j=0

(αj − zβj)ζj = 0 = ρ(ζ)− zσ(ζ).

The stability region S of a linear multistep method is the set of all points z ∈ C such that
all roots ζ of the polynomial equation ρ(ζ) − zσ(ζ) = 0 lie on the unit disc |ζ| ≤ 1, and
those with modulus one are simple.

On the boundary of the stability region S, precisely one root has modulus one, say ζ = eiθ.
Therefore an explicit representation for the boundary of S is easily derived:

∂S =

{
z =

ρ(eiθ)

σ(eiθ)
, θ[−π, π]

}
.
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Figure 9.2 shows plots of the stability regions for the Adams-Bashforth methods of orders
p = 1, 2 and 3.

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5
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−0.5

0

0.5

1

1.5
Adams−Bashforth Stability Regions, p=1,2,3

Figure 9.2: Stability regions of the Adams-Bashforth methods of orders p = 1 (blue), 2
(green) and 3 (red).

A linear multistep method is called A-stable (or unconditionally stable) if the stability
domain S contains the entire left half-plane

{z ∈ C : Re z ≤ 0} ⊂ S.

Theorem 9.4.1 An A-stable linear multistep method has order p ≤ 2.

This restriction on the maximum order of a linear multistep method was an important
result in numerical analysis, proved by G. Dahlquist.

For stiff problems in which the stiff components have eigenvalues near the real axis, A-
stability is too strong a requirement. Instead a weaker concept is introduced:

The linear multistep method (9.1) is A(α)-stable, for α ∈ (0, π/2), if the stability domain
contains a wedge in the left half-plane:

{z ∈ C : | arg(z)− π| < α} ⊂ S.

The important point is that for λ lying within the wedge of stability, the method is un-
conditionally stable (norm-nonincreasing for any ∆t).
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Figure 9.3 shows plots of the stability regions for the backward differentiation formulae
(BDF) of orders p = 1, . . . , 6. The first and second order methods are A-stable. The rest
are A(α)-stable with α (approximately):

Order, p α
3 86.03◦

4 73.35◦

5 51.84◦

6 17.84◦
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Figure 9.3: Stability regions of the BDF methods of orders p = 1, . . . , 6. For BDF-1 S is
everything outside the white region; for BDF-2 it is everything outside the white and blue
regions; etc.
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