Solutions ${ }^{1}$ Thermische fysica 2 (NS-355b) November 9, 2010

Question 1: Energy, entropy and free energy

a) If $\mu>0$, it costs energy to place a particle on the lattice, so the ground states contains no particles:
If $\mu<0$, it gives energy to place a particle on the lattice, so the ground states contains the maximum number of particles, namely 3 :
b) If $\mu=0$, every states has equal energy, so every state is a ground state, so

$$
\begin{equation*}
S=k_{B} \log \Omega=k_{B} \log 13 \tag{1}
\end{equation*}
$$

where Ω is the multiplicity.
c) If the temperature is high $(\beta \mu \approx 0)$, every state is equally probable, so

$$
\begin{equation*}
\langle N\rangle=\frac{1}{13}(1 \times 0+5 \times 1+6 \times 2+1 \times 3)=\frac{20}{13} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle N^{2}\right\rangle=\frac{1}{13}\left(1 \times 0^{2}+5 \times 1^{2}+6 \times 2^{2}+1 \times 3^{2}\right)=\frac{38}{13} \tag{3}
\end{equation*}
$$

d) Within linear response theory, $\frac{\partial\langle N\rangle}{\partial \beta \mu}=-\left(\left\langle N^{2}\right\rangle-\langle N\rangle^{2}\right)$, so $\frac{\partial\langle N\rangle}{\partial \mu}=\frac{-1}{k_{B} T} \frac{94}{169}$.

Question 2: polymers

a) In general is $\left.R_{e e}^{2}=\left\langle\langle | \vec{x}_{N}-\left.\vec{x}_{0}\right|^{2}\right\rangle\right\rangle=\sum_{i=1}^{N} \sum_{j=1}^{N}\left\langle\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right\rangle$. Since the orientation of connected segments is arbitrary, $\left\langle\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right\rangle=\delta_{i j} l^{2}$, so $R_{e e}^{2}=\sum_{i=1}^{N} \sum_{j=1}^{N} \delta_{i j} l^{2}=N l^{2}$.
b) The energy is minimal if $\vec{\sigma}_{i} \cdot \vec{\sigma}_{i+1}$ is maximal. The maximum of this inner product is l^{2}, so $E_{\text {ground state }}=-\epsilon(N-1)$.
c) The probability to find a hinge with angle θ is proportional to it's Boltzman weight;

$$
\begin{align*}
P(\theta) \propto e^{-\beta E} & =e^{\beta \frac{\epsilon}{l^{2}} \vec{\sigma}_{i} \cdot \vec{\sigma}_{i-1}} \tag{4}\\
& =e^{\beta \frac{\epsilon}{l^{2} l^{2}} \cos \theta} \tag{5}\\
& =e^{\beta\left(E_{\text {ground state }}-\frac{\epsilon}{2} \theta^{2}\right)} \tag{6}\\
& \propto e^{-\frac{\beta \epsilon}{2} \theta^{2}} \tag{7}
\end{align*}
$$

So θ is normally distributed with standard deviation $\sqrt{\frac{1}{\beta \epsilon}}$, so $A=1$.
d) Since the angle is normally distributed, you can add the angles quadratically, so $\left\langle\theta_{i, i+j}^{2}\right\rangle=$ $j\left\langle\theta_{i, i+1}^{2}\right\rangle$. This means that

$$
\begin{align*}
\left\langle\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right\rangle & =l^{2}\left\langle\cos \theta_{i, i+j}\right\rangle=l^{2} e^{-\frac{j\left\langle\theta_{i, i+1}^{2}\right\rangle}{2}} \tag{8}\\
& =l^{2} e^{-j \frac{1}{2 \beta \epsilon}} \tag{9}
\end{align*}
$$

[^0]Note that in the exam, it was abusively stated that $\langle\cos \theta\rangle \approx \exp \left(-\left\langle\theta^{2}\right\rangle\right)$ instead of $\langle\cos \theta\rangle \approx$ $\exp \left(-\frac{\left\langle\theta^{2}\right\rangle}{2}\right)$. You can still get full points if you used the first relation.
e) The same analysis as in (a) yields to

$$
\begin{align*}
R_{e e}^{2} & =\sum_{i=1}^{N} \sum_{j=1}^{N}\left\langle\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right\rangle \tag{10}\\
& =l^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} e^{-|i-j| \frac{1}{2 \beta \epsilon}} \tag{11}
\end{align*}
$$

This can be calculated using geometric series:

$$
\begin{align*}
R_{e e}^{2} & =l^{2}\left(N+2 \frac{1}{1-e^{-B}}\left(N e^{-B}-\frac{1-e^{-(N+1) B}}{1-e^{-B}}\right)\right) \tag{12}\\
& \approx l^{2}\left(N+2 \frac{N e^{-B}}{1-e^{-B}}\right)=l^{2} N \frac{1+e^{-B}}{1-e^{-B}} \tag{13}
\end{align*}
$$

[^0]: ${ }^{1}$ These solutions were made with great precaution. In case of errors, the $\mathcal{I}_{\mathcal{B}} \mathcal{C}$ cannot be held responsible. However, she will be glad to be informed: tbc@a-eskwadraat.nl

