RETAKE COMPLEX FUNCTIONS

JULY 21, 2016, 13:30-16:30

- Put your name and student number on every sheet you hand in.
- When you use a theorem, show that the conditions are met.
- Include your partial solutions, even if you were unable to complete an exercise.
- No auxiliary material allowed.

Exercise 1 (15 pt): Determine all entire functions f such that

$$
(f(z))^{2}-\left(f^{\prime}(z)\right)^{2}=1
$$

for all $z \in \mathbb{C}$.
Exercise 2 (30 pt):
Prove that the following integrals converge and evaluate them.
a. $(15 p t) \int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)^{3}} d x$
b. $(15 p t) \int_{0}^{\infty} \frac{\log x}{x^{4}+1} d x$
(Hint for (b): Use a contour consisting of two semicircles and two segments and use an appropriate definition of the complex logarithm.)

Exercise 3 (15 pt): Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. Assume that $f(1)=2 f(0)$. Given $\epsilon>0$, prove that there exists $z \in \mathbb{C}$ with $|f(z)|<\epsilon$.

Exercise 4 (15 $\boldsymbol{p t}$): Consider the polynomial function $f(z)=z^{3}+A z^{2}+B$, where A and B are complex numbers. Assume that the following inequalities hold:

$$
|A|+1<|B|<4|A|-8 .
$$

a. (10 pt) Determine the number of zeroes (counted with multiplicities) of $f(z)$ with $|z| \leq 1$ and also the number of zeroes (with multiplicities) of $f(z)$ with $|z| \leq 2$.
b. (5 pt) By finding the zeroes of $z^{3}-3 z^{2}+4$, show that these numbers of zeroes (with multiplicities) may be different when

$$
|A|+1=|B|=4|A|-8 .
$$

Exercise 5 (15 pt): Let f be an entire function that sends both the real axis and the imaginary axis to the real axis.
a. (5 pt) Give an example of such a function for which in addition the following two properties hold:
(i) f is surjective;
(ii) $f(\mathbb{R}) \cap f(i \mathbb{R})=\{f(0)\}$.
b. (10 pt) Prove that no function satisfying the original hypotheses is injective. (I.e., you should prove: if f is entire and $f(\mathbb{R}) \subseteq \mathbb{R}$ and $f(i \mathbb{R}) \subseteq \mathbb{R}$, then f is not injective.)

Bonus Exercise (15 pt): Assume that f is analytic in the punctured disc $\{z \in \mathbb{C}|0<|z|<R\}$ of radius $R>0$ and that the isolated singularity of f at $z=0$ is not removable. Prove that $g(z)=\exp (f(z))$ has an essential singularity at $z=0$.
Hint: There are two cases: f has a pole at $z=0$ or an essential singularity. When f has a pole, use a suitable local coordinate.

