ENDTERM COMPLEX FUNCTIONS

JUNE 27, 2017, 9:00-12:00

- Put your name and student number on every sheet you hand in.
- When you use a theorem, show that the conditions are met.
- Include your partial solutions, even if you were unable to complete an exercise.

Notation: For $a \in \mathbb{C}$ and $r>0$, we write $D(a, r)=\{z \in \mathbb{C}:|z-a|<r\}$, and $\bar{D}(a, r)$ and $C(a, r)$ are the closure and boundary respectively of $D(a, r)$.

Exercise $1(10 p t)$:
Evaluate the following integral (which clearly is convergent).

$$
\int_{0}^{\infty} \frac{1}{\left(x^{2}+4\right)\left(x^{2}+9\right)} d x
$$

Exercise 2 (15 pt):

Fix $R>0$ and $a \in \mathbb{C}$; we write $D:=D(a, R)$ and $\bar{D}:=\bar{D}(a, R)$ and $C:=C(a, R)$. Let $f, g: \bar{D} \rightarrow \mathbb{C}$ be continuous functions, analytic on D, such that $|f(z)|=|g(z)|$ for all $z \in C$, and such that f and g have no zeros in \bar{D}. Show that $f=\alpha g$ for some $\alpha \in \mathbb{C}$ with $|\alpha|=1$.

Exercise 3 (15 pt):

Let $a, b \in \mathbb{C}$. Consider the polynomial $p(z)=z^{7}+a z^{4}+b z^{2}-2$.
(a) Show that if $|z| \leq 1 / \sqrt{2}$, then

$$
|p(z)| \geq \frac{32-\sqrt{2}-4|a|-8|b|}{16}
$$

(b) Suppose that

$$
|b|+3<|a| \leq \frac{15}{2}-2|b| .
$$

Show that, counting zeros with their multiplicities, p has
(i) no zeros in the disk $|z| \leq 1 / \sqrt{2}$,
(ii) four zeros in the annulus $1 / \sqrt{2}<|z|<1$,
(iii) three zeros in the annulus $1<|z|<2$,
(iv) and no zeros in the annulus $2 \leq|z|$.

Exercise $4(15 p t)$: Let

$$
f(z)=\frac{z^{2}(z-1) e^{z}}{\sin ^{2} \pi z}
$$

and let $U \subset \mathbb{C}$ be the domain of f. Let $V \subset \mathbb{C}$ be the maximal open set on which a holomorphic function g can be defined that agrees with f on U. For each $v \in V$, determine the radius of convergence of the power series for g at v.

Exercise 5 (15 pt):

Let f be a non-constant entire function. Prove that the closure of $f(\mathbb{C})$ equals \mathbb{C}.

Exercise 6 (20 pt):

Prove that the following integral converges and evaluate it.

$$
\int_{0}^{\infty} \frac{\log x}{x^{3}+1} d x
$$

(Hint: Use a contour consisting of two circular arcs and two segments, with 'vertices' ϵ, $R, R c$, and ϵc, where $c^{3}=1, c \neq 1$. Use the natural substitution to relate the integrals over the two segments. Use an appropriate definition of the complex logarithm.)

