ENDTERM COMPLEX FUNCTIONS

JUNE 27, 2017, 9:00-12:00

- Put your name and student number on every sheet you hand in.
- When you use a theorem, show that the conditions are met.
- Include your partial solutions, even if you were unable to complete an exercise.

Notation: For $a \in \mathbb{C}$ and r > 0, we write $D(a,r) = \{z \in \mathbb{C} : |z - a| < r\}$, and $\overline{D}(a,r)$ and C(a,r) are the closure and boundary respectively of D(a,r).

Exercise 1 (10 pt):

Evaluate the following integral (which clearly is convergent).

$$\int_0^\infty \frac{1}{(x^2+4)(x^2+9)} \ dx.$$

Exercise 2 (15 pt):

Fix R > 0 and $a \in \mathbb{C}$; we write D := D(a, R) and $\overline{D} := \overline{D}(a, R)$ and C := C(a, R). Let $f, g : \overline{D} \to \mathbb{C}$ be continuous functions, analytic on D, such that |f(z)| = |g(z)| for all $z \in C$, and such that f and g have no zeros in \overline{D} . Show that $f = \alpha g$ for some $\alpha \in \mathbb{C}$ with $|\alpha| = 1$.

Exercise 3 (15 pt):

Let $a, b \in \mathbb{C}$. Consider the polynomial $p(z) = z^7 + az^4 + bz^2 - 2$.

(a) Show that if $|z| \leq 1/\sqrt{2}$, then

$$|p(z)| \ge \frac{32 - \sqrt{2} - 4|a| - 8|b|}{16}.$$

(b) Suppose that

$$|b| + 3 < |a| \le \frac{15}{2} - 2|b|.$$

Show that, counting zeros with their multiplicities, p has

- (i) no zeros in the disk $|z| \leq 1/\sqrt{2}$,
- (ii) four zeros in the annulus $1/\sqrt{2} < |z| < 1$,
- (iii) three zeros in the annulus 1 < |z| < 2,
- (iv) and no zeros in the annulus $2 \leq |z|$.

Exercise 4 (15 pt): Let

$$f(z) = \frac{z^2(z-1)e^z}{\sin^2 \pi z}$$

and let $U \subset \mathbb{C}$ be the domain of f. Let $V \subset \mathbb{C}$ be the maximal open set on which a holomorphic function g can be defined that agrees with f on U. For each $v \in V$, determine the radius of convergence of the power series for g at v.

Exercise 5 (15 pt):

Let f be a non-constant entire function. Prove that the closure of $f(\mathbb{C})$ equals \mathbb{C} .

Exercise 6 (20 pt):

Prove that the following integral converges and evaluate it.

$$\int_0^\infty \frac{\log x}{x^3 + 1} \ dx.$$

(Hint: Use a contour consisting of two circular arcs and two segments, with 'vertices' ϵ , R, Rc, and ϵc , where $c^3 = 1$, $c \neq 1$. Use the natural substitution to relate the integrals over the two segments. Use an appropriate definition of the complex logarithm.)