2ND EXAM 'INLEIDING IN DE GETALTHEORIE'

Tuesday, 9th October 2018, 9 am - 10 am

Question 1 (4 points)
a) Find the orders of 2,3 and 5 modulo 23 .
b) Find all primitive roots modulo 7,14 and 49 .

Question 2 (4 points)
Compute the following symbols

$$
\binom{313}{367}, \quad\binom{367}{401}, \quad\binom{401}{313}, \quad\binom{2}{313}
$$

Question 3 (4 points)
Let n be a natural number and assume that there is no odd prime number p with $p^{2} \mid n$. We write $\nu(n)$ for the number of residue classes x modulo n with $x^{2} \equiv-1 \bmod n$. Let S be the set of odd prime divisors of n.
a) Assume that $4 \mid n$ or that there is a prime number $p \in S$ with $p \equiv 3 \bmod 4$. Deduce that $\nu(n)=0$.
b) Assume that $4 \nmid n$ and that $p \equiv 1 \bmod 4$ for all primes p contained in S. Show that in this case we have

$$
\nu(n)=2^{|S|}
$$

where we write $|S|$ for the cardinality of the set S.
Question 4 (4 points)
Let p be an odd prime number and k a natural number. Show that

$$
1^{k}+2^{k}+\ldots+(p-1)^{k} \equiv\left\{\begin{array}{ccc}
0 & \bmod p & \text { if } \operatorname{gcd}(p-1, k)=1 \\
-1 & \bmod p & \text { if } p-1 \mid k
\end{array}\right.
$$

(Note: the first statement even holds under the stronger assumption $p-1 \nmid k$)

Note: A simple non-programmable calculator is allowed for the exam.

